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ABSTRACT

Numerical methods of integration of the equations of motion of a

controlled satellite under the influence of gravity-gradient torque

are considered. The results of computer experimentation using a number

of Runge-Kutta, multi-step, and extrapolation methods for the numeri-

cal integration of this differential system are presented, and par-

ticularly efficient methods are noted. A large bibliography of

numerical methods for initial value problems for ordinary differential

equations is presented, and a compilation of Runge-Kutta and multi-

step formulas is given. Less common numerical integration techniques

from the literature are noted for further consideration.

This report was prepared by Department of Aerophysics and Aerospace

Engineering, Mississippi State University under Contract NAS8-28833 for
the George C. Marshall Space Flight Center of the National Aeronautics
and Space Administration.



INTRODUCTION

The integration of the equations of motion describing the dynamics

of a body in orbit, as affected by various perturbing forces and the

corrective action of control systems, normally requires the use of

hybrid computers because of the difficulty and time involved in inte-

gration of high frequency components by present numerical techniques.

It is desirable, however, to be able to describe the vehicular

dynamics and the vehicle response to control action numerically in order

to take advantage of the advanced development and ease of use of digital

computers, particularly on board the vehicle. This can only be achieved

by improved mathematical analysis of the numerical integration of the

initial value problem with simultaneous ordinary differential equations.

While the numerical techniques that have become standard are adequate

for the integration of such systems when only low frequency modes are

involved, the efficient analysis of high frequency modes requires the

development of new approaches.

It is therefore necessary to develop further the mathematical anal-

ysis of the numerical integration of systems of simultaneous ordinary

differential equations as an initial value problem with specific ap-

plication to the equations describing the vehicular dynamics of a con-

trolled body in orbit. The ultimate goal of the present project is

to develop particularly efficient numerical integration schemes for

the equations of motion of a flexible orbiting body rotating under the

influence of gravity gradient and control torques.

In the present investigation an extensive bibliography of papers

dealing with the numerical solution of systems of ordinary differential
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equations has been compiled and is included in this report. Many dif-

ferent methods of solution have been obtained therefrom to be compared.

In the present effort comparisons of a large number of Runge-Kutta,

multi-step, hybrid, and extrapolation methods have been made using

the equations of motion of a rigid satellite in circular orbit ro-

tating under the influence of gravity gradient and control torques to

a fixed attitude, and the results of these comparisons are reported

herein. Further effort is required to extend the comparison to other

types of methods, and to compare .ll methods in regard to the equations

of motion of non-rigid satellites.
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CHAPTER I

EQUATIONS OF MOTION

For a rigid space vehicle in orbit, six ordinary differential

equations are required to specify its spatial motion--three equations

for rotations and three for displacements. If the vehicle is con-

sidered non-rigid,more equations (partial differential equations) are

required to specify the deformations of the body.

In this study the body is considered rigid. The equations of

motion are formulated in terms of quaternions, these being functions

of the direction cosines of the body axes. The introduction of these

quaternions results in seven first order ordinary differential equa-

tions which specify the motion of the body.

The vehicle is in orbit and the motion is assumed to be affected

only by earth's gravitational field. The space vehicle is to be kept

attitude fixed, that is, its direction should be invariant for all time.

Any deviations from this fixed direction are to be corrected by an

on-board control system. Deviations from the fixed attitude occur

because of the gravity gradient and imperfections in the launch

process. These deviations are indicated by the quaternions.

The seven first-order ordinary differential equations, in matrix

form are:

3GM
Iw + w x IIw = - r I*r + T 1.1 (3 equations)

ll -- c

S= - 1 2(w)q 1.2 (4 equations)2 - -



where

w = w2  is the angular velocity vector,

w

w is the time rate of change of w,

q1 el1sin i/2

q2 e2sin /2
= is the quaternion vector,

q3 e3sin /2

q cos i/2

is the time rate of change of q,

is the angle of rotation of the body's rotation vector e from a fixed

attitude,

T is the control torque vector, a function of w and j,

i11 i12 i13

S=  21 i22 i23 is the moment of inertia matrix

i31  i32  i33

r is the radius vector of the orbit referred to the vehicle fixed

axes and is related to the inertial axes, fixed to the center of

the earth, by a transformation matrix D,

G is the universal gravitational constant,

M is the mass of the earth,

(w) is an asymmetric matrix function of w as defined below:
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0 -w 3  W2  W1

w3  0 - I  w2

M(w) = 2 1 0
-w2  wI  w3

-Wl 2  -W3  0

Since I is non-singular, we may write (1.1) as

w = I-1 [ 3GM x r - w x w + T] 1.3

Evaluating the matrix cross products and defining an asymmetric

matrix function F(a), where a is any vector, by

0 -a3  a2

F(a) = a3  0 -l

-a2  a1  0

we have

-1 3GM
w = I [ F(r)I r- F(w)I w + Tc] 1.4

* 11= - (w) 1.5
2

The transformation of rI (inertial axes) to r (vehicle axes) is

given by

cos w0t

S R sin wt 1.6
I 0

0 /



r =D r I  1.7
-I

where

2 2 2 2
D11 =1 - 2 - 3 +  4

D12 = 2(qlq2 + q 3 q 4 )

D13 = 2(qlq3 - q 2 q 4 )

D21 = 2(qlq 2 - q 3 q 4 )

D -2 2 2 2 1.8
22 = 1 

+ q2 - q3 
+  4

D23 = 2(q 2 q 3 + q 1 q 4 )

D31 = 2(qlq 3 + q2 q4 )

D32 = 2(q 2q3 - q1 q4 )

2 2 2 2
33 1- 2 + 3 +4

The control torque vector is given by

T =A +b w 1.9

where

A is a control matrix (with dimensions of torque), taken in the

present comparisons as

4250 0 0

A = 2 0 39,950 0nt - m

0 0 39,95

b is a control matrix (with dimensions of angular momentum):

[B = w b]

-3400 0 0

b = 0 -8800 0kg - m2/sec

0 0 -8800
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For the spacecraft under consideration in these comparisons, the

moments of inertia in MKS units are:

,320 0 0

= 88,950 0kg-m 2

0 0 89,120

w= 14 3 2

with: GM = 3.98602 x 10 m /sec

RO = 6.6525535 x 107 m for a 90 minute circular orbital period.

Equations 1.4 and 1.5 can be expressed in vector form as an

initial value problem as follows:

dY

dt- F(Y,t)

1.10

Y(t0 ) =

where:

w2

w3

Y= q1

q2

q3

q4

t0 is the initial time and



wwl(t 0)

w2 (t O)

w3 (t 0)

1 (t 0

q 2 (t 0 )

q 3 (t 0 )

q 4(to)
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CHAPTER II

NUMERICAL EXPERIMENTATION PROCEDURE

The complexities of the system preclude an analytical solution,

and hence as the true solution is unknown, the various numerical in-

tegration methods could only be compared with each other. The basis

of comparison was the estimated truncation error as detailed below.

No account of round-off error was made because this error depends on

the computer used and the number of computations made in each method.

We assume that the local truncation error for a p-order single-

step method has the form

T(t, h) = g hp+l 2.1

where g is the principal error function (assumed essentially constant).

Then proceeding from (tn 1  Yn-l) to (tn+l Y n+l ) , using two steps,

each of size h, the truncation error is approximately

T(tn+l, h) = g 2(h p+ 1) 2.2

so that

(h) p+l
Y(t ) - Y = 2 g h 2.3

n+1 n+1

With the same method, going from (tn-, n-1) to (tn+1  Yn+l ) in one

step of size 2h, the truncation error is

T(tn+, h) = g(2h)p+l 2.4

(2h) p+l p+l
Y(t ) - Y2h) 2 l g h 2.5

n+1 n+1

Subtracting 2.3 from 2.5 gives

y(h) _(2h) P+lp+
Y (h)- Y g h [2p +  - 2] 2.6
n+l n+l
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Then approximately (h) - (2h)
n+l n+l

T(t h) =n+l n+ 2.7
n+l' 2P+1 - 2

Equation 2.7 was used to compare different methods. This is not

an exact expression for the truncation error because g is not completely

constant. Still this expression is a useful way to compare methods be-

cause it gives some measure of the truncation error involved. This

estimate applies strictly to single-step methods, but was used for all

methods since it still is some measure of the error and should tend

to zero for any method as the step size decreases to zero even though

it is not strictly to be interpreted as truncation error for multi-

step methods.

Each method tested was run for the maximum step size, and then

a number of runs were made with the step size halved successively.

Equation 2.7 was used to estimate the error between the solution using

step size h, and the solution using h/2. This error was calculated at

each time step and a root mean square of these errors was calculated.

This RMS value was used to judge different methods.

The initial conditions used for the comparison were

0 0

((t 0 q(t) = 0

1

The period of orbit was 90 minutes. The maximum step size used was

h = 0.001.*

*All times and time steps without units are fractions of the orbit

period.



Figure 1 illustrates a typical solution up to t = 0.25 (quarter

of an orbit).

With the initial conditions used, wl, w2, q1 ' q2 ' q4 always re-

main unchanged, while w3 and q3 oscillate. This is to be expected as

the gravity differential on the spacecraft is the only disturbing

moment, and hence only w3 and q3 are affected. q3 oscillates at twice

the orbital period, and has no transient phase. w 3, however, has a

transient phase, and dictates the step size, h, necessary for stability.

For this reason, only the truncation error committed in w3 was used to

judge the methods tested. The error in w3 by far outweighs the error

in q3 '

Most methods were unstable for h = 0.001. With each method six

more h's were run, with h halved for each run. Figure 1 shows that

the fast ocsillations of w3 die down at about t 
= 0.02. The comparison

scheme discussed above was used to calculate the RMS truncation error

up to t = 0.04. This interval includes a period of fast oscillation,

up to t = 0.02, and a period of slow periodic oscillation, up to t =

0.04. The h = 0.001 runs will obviously have the maximum truncation

error, and each successive halving of h will reduce this error because

as h + 0 the truncation error -* 0.

All runs were made in single precision arithmetic on a UNIVAC

1106 computer.
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CHAPTER III

RESULTS OF COMPARISONS

Runge-Kutta Methods*

In Table I Runge-Kutta methods are compared by two parameters:

RMS truncation error and computational time. The computational time

is calculated as the number of function evaluations required by the

particular method, i.e., the number of stages, V, for Runge-Kutta

methods. Thus computation time is in units of number of function

evaluations. Each method compared is identified by its name and

its equation number in Appendix I.*

An X under a step size h, indicates that the method was unstable

for that h. A - under a step size h, indicates that this step size

was not run with this method. A 0 will occur for the smallest step

size run because no truncation error can be calculated for the smallest

step size.

Figure 2 shows examples of the errors in w 3 and q3 for various

step sizes plotted against time t. Figure 3 shows examples of the

RMS T plotted against step size for w 3. Both these figures are for

the fourth-order Runge-Kutta-Ralston method.

Selecting a best method out of the ones tested is a judgment

problem and depends on the users' requirements. Most users require

both speed and accuracy. Hence the methods of Table I were judged

on the basis of an error-time parameter,ET. This is a judgment

*Shahid Ahmed Siddiqi, "A Comparison of Various Order, Single-
Step Explicit Runge-Kutta Methods Used to Solve the Equations of
Motion of a Rigid Spacecraft in Circular Orbit" (unpublished M.S.
thesis, Mississippi State University, 1973).
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?arameter which gives an equal weight to both the error and the compu-

tational time of a particular method:

REMS T V
ET = P+ ) )

2 - 2

Based on this parameter, ET, the following observations are im-

mediately made from Table I:

Best fourth-order RKE: Ralston RKE(4,4)*

Best fifth-order RKE: Butcher RKE(5,6)

Best sixth-order RKE: Shanks RKE(6,6)

Best seventh-order RKE: Sarafyan RKE(7,10)

(except for h = 0.000125)

Best eighth-order RKE: Shanks RKE(8,10)

(except for h = 0.000125)

Now from among these five methods, the best choice, based on

the ET parameter, is Shanks RKE(8,10) with h = 0.00025.

The results can be interpreted in another way: it is better,

i.e., smaller ET, to use the Butcher RKE(5,6) at h = 0.000125 than

to use the Shanks RKE(8,10) at h = 0.0005. Another observation,

evident from Table I,is that the sixth, seventh, and eighth-order

methods reach minimum ET's, but not at the smallest step size.

It is again emphasized that the judgment parameter ET gives equal

weight to error and time.

Multi-Step Methods

Although a complete investigation of the multi-step methods is

desirable, the available time permitted only a limited investigation.

*RKE(q,r) refers to an explicit Runge-Kutta method of q-order with
r stages.
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With the time factor in mind, three of the most promising types of

predictors were chosen - Adams-Bashforth (AB), Krough, and Craine-

Klopfenstein (CK), and three types of correctors were chosen -

Adams-Moulton (AM), Rodabough-Wesson (RW) and Wesson. Also, a Butcher

fifth order hybrid method was chosen to compare with the multi-step

methods.

The predictor and corrector equations were used to solve the

initial value problem in various P-C combinations in both the PEC and

PECE modes. Also the PE(CE) s mode was run with an accelerated Jacobi

scheme; however, the acceleration parameter was found to be zero for

this solution. Thus, the PE(CE) s mode was discarded. The result

of the experimentation is presented in Table II.

From Table II, the best of the three types of predictors was

the CK predictor, and the best of the three types of correctors was

the AM corrector. To verify these conclusions the following observa-

tions were made:

1) The three predictors were used in P-C combinations with the

sixth-order AM corrector. The fourth-order CK was found

to give a truncation error 9.4 times less than that of the

fourth-order Krogh predictor for a time step of .000125.

Also, the fourth-order CK was found to give a truncation

error 16.5 times less than that of the fourth-order AB

predictor at the same time step.

2) The fifth-order Butcher hybrid gave 3 times less truncation

error than the eighth-order AB-AM combination for a time

step of .000125. However, the sixth-order CK-AM combination

gave 2 times less truncation error than the fifth-order

Butcher hybrid method.
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3) The fourth-order CK-sixth-order AM combination gave 6.5 times

less truncation error than the eighth-order AB-AM combination.

4) The RW correctors gave solutions that did not closely compare

with the other Runge-Kutta and multi-step solutions. Thus,

the RW correctors were discarded.

5) The fourth-order CK-eighth-order AM combination had slightly

less truncation error than the fourth order CK-eighth-order

Wesson combination for all timesteps considered.

Based on the merit factor, ET, introduced above, the fourth-

order CK-eighth-order AM combination is the best of those considered.

The best multi-step methods considered are generally less ef-

fective than the best Runge-Kutta methods when judged by this merit

factor, and stability limitations preclude the use of the larger

step sizes allowed with the Runge-Kutta methods with the higher-

order methods. It thus appears that the best Runge-Kutta methods are

to be preferred for this system of differential equations.

Extrapolation Methods

Six extrapolation methods were investigated. These methods used

rational function and polynomial function extrapolation with the

Euler and modified midpoint algorithms. The Euler algorithm was

used with polynomial function extrapolation with the basic time step

being subdivided according to each of the sequences

hk = h0/2k

and

hk = {h0 , h0/2, h0/3, h0 4, ... }

The modified midpoint rule was used with both rational function and

polynomial function extrapolation with each of the above sequences.
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All methods used local extrapolation. The A-stable trapezoidal rule

was not used since it requires global extrapolation. Further details

on the Euler-Romberg and Bulirsch-Stoer modified midpoint method

can be found in Reference [556].

Since the extrapolation methods subdivide each time step re-

peatedly until a desired tolerance between successive extrapolations

is obtained, comparisons with other methods is not directly possible.

However, some conclusions can be drawn concerning the best of the

extrapolation methods with regard to accuracy and number of function

evaluations.

Extrapolation methods have as variable parameters the basic step

size and the tolerance between successive extrapolations. In this

work there is no automatic step size correction. Results for compari-

son purposes were obtained by making a number of computer runs at

different basic step sizes with constant tolerance between successive

extrapolations and then repeating the runs with successively smaller

tolerances between successive extrapolations. These results indicate

an optimum value of tolerance and step size for each method. As the

basic step size increases, the number of extrapolations (function

evaluations) needed to obtain a given tolerance decreases. However,

for large step sizes the accuracy of the extrapolated values tends

to decrease. The optimum values must be determined for each method

experimentally. If the tolerance between successive extrapolations

is too low, accuracy is poor, while if too high, instability can occur.

All midpoint rule methods became unstable at a basic step size

of .00037 (fraction of one orbit), some at a smaller step size. So

apparently extrapolation cannot totally overcome the instability
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characteristic of the midpoint rules. When using a halving sequence,

polynomial function extrapolation required more function evaluations

than the rational function extrapolation with little difference in

accuracy. If a reciprocal sequence was used the polynomial function

extrapolation required fewer function evaluations than the rational

function extrapolation method but gave less accurate results and

went unstable at a lower step size. Thus there is little advantage

to either rational function or polynomial function extrapolation, and

the reciprocal and halving sequences produced no real savings in

function evaluations when used with the midpoint rule.

Of the two Euler methods which both used polynomial function ex-

trapolation, the solution obtained with the reciprocal sequence was

very slightly more accurate than the solution obtained by successively

halving the time step. The number of function evaluations was from

2 to 8 times fewer for the solution with the reciprocal sequence of

step size subdivision, depending upon the smallness of the tolerance

between successive extrapolations.

Partial results are presented in Figure 4. The best two methods

are shown, these being the Euler algorithm with polynomial function

extrapolation utilizing a reciprocal sequence for step size subdivision

(ERPESR) and the modified midpoint rule with rational function ex-

trapolation utilizing a halving sequence (BSRESH).

The accuracy of both methods is seen to be a function of step

size and tolerance between successive extrapolations. BSRESH ap-

proaches the accuracy of ERPESR but requires about 40 times as many

function evaluations at a step size of .000185 (fraction of one orbit).

At a step size of .00037 the order of the function evaluations is the
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same but BSRESH goes unstable at higher values of time. Extrapolation

to higher tolerances increases accuracy, particularly at lower step

sizes, at the expense of increased function evaluations for both

BSRESH and ERPESH. However, there is a limit to the tolerances for

both methods below which the solution becomes unstable. And, of

course, if the tolerance is too large accuracy decreases.

ERPESH had constant accuracy over a large range of tolerances

(10 - 10 ) for step sizes between .0000231 and .000185. However,

at larger step sizes the accuracy of the solution decreased at lower

tolerances (10-4 ).

Thus the best of the extrapolation methods is ERPESR, Euler

algorithm with polynomial function extrapolation using a reciprocal

sequence to subdivide the basic step size until a tolerance between

successive extrapolation of 10 to 10- 10 is achieved. This method

gives better accuracy than the Runge-Kutta and predictor corrector

methods and takes about the same number of function evaluations. A

value of angular velocity obtained by the best of the predictor

corrector methods is shown on Figure 5 at a step size of .000185.

This value is 1.4% lower than the value obtained by ERPESR and re-

quired 40 function evaluations as compared to 41 function evaluations

-4
for ERPESR when the extrapolation was carried to a tolerance of 10- 4

or 71 function evaluation for a tolerance of 10- 0 . Thus ERPESR

appears to require the same order of function evaluation as Runge-

Kutta and predictor corrector methods at a better accuracy.
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CHAPTER IV

SURVEY OF TECHNIQUES FOR FURTHER CONSIDERATION

The numerical solution of the initial value problem

' =~f(t,y) , y(0) E . 4.1

has been approached in various ways as outlined below. As is noted,

the various classes cited are not exclusive, but overlap one another.

Quadrature Methods

One may write formally

t
y(t ) = y(t ) + f r f (t, y(t)) dt 4.2

t
q

In the quadrature methods, the integral in 4.2 is approximated by a

numerical quadrature expression. For instance, suppose it is desired

to calculate the numerical approximation, yn, at a series of times, tn,

n=O, 1i, 2,-**, called the nodes hereafter for convenience of notation,

these nodes not necessarily being equally spaced. Then we may approxi-

mate the integral of 4.2 by a numerical quadrature consisting of a

linear combination of nodal values and possibly also some intermediate

values at points interspersed among the nodes. The coefficients in the

linear combination and the locations of the nodes and/or the inter-nodal

points are determined by the particular type of numerical quadrature

employed. These factors are obtained directly from quadrature expres-

sions for some types of methods, but by only indirect reference to

numerical quadrature in others, the former type being that strictly

referred to as "quadrature methods" in many works.



20

If only previously calculated nodal values, and possibly the

value at the node presently under consideration, are included in the

quadrature formula, then no additional equations are required, and

the value at the node presently under consideration is determined

either explicitly or implicitly through the solution of a nonlinear

equation, depending on whether or not the value at the node under

consideration is included in the quadrature expression. Methods of

this type are also a sub-class of the linear multi-step methods dis-

cussed below.

Nesterchuk [378] gives such an implicit method involving
all previous nodal points.

If nodal points beyond the node presently under consideration are

included in the quadrature formula then an equation must be written for

each of these points, and a system of equations must then be solved

simultaneously for all the unknown nodal values involved. This type

method is also a sub-class of the block linear multi-step methods dis-

cussed below.

Day [116] gives a method of this type using Lobatto
quadrature and successively higher moments of the differential
equation to supply the needed equations for all the unknown
nodal values included in the block. For linear equations
this method achieves n+l order with n function evaluations
and is reported to be superior in accuracy to some Runge-
Kutta methods.

If inter-nodal points are involved, additional equations for

the values at these points must be included. If these inter-nodal

values are determined in turn by quadrature formulas, we have the

standard Runge-Kutta methods. Within this class we have explicit

methods if the expressions for the inter-nodal values involve only

values at previous inter-nodal points, semi-implicit methods if these
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expressions involve the presently considered inter-nodal value as

well but none beyond, and implicit methods if inter-nodal values beyond

that presently considered are included. The latter types require,

respectively, the solution of one nonlinear equation at each inter-

nodal point or the simultaneous solution of a system of equations,

one for each internodal point.

The method of Hulme [253] is a generalization of this im-
plicit Runge-Kutta form constructed using Gaussian quadrature
to approximate the integrals involved in a Galerkin approxi-
mation with the solution represented by a polynomial within
each step. This produces a piecewise continuous solution
with essentially the same effort required by conventional
implicit Runge-Kutta methods and the same nodal values as
produced thereby. Axelsson [13], in a general discussion of
quadrature methods, presents implicit Runge-Kutta methods
based on Radau and Lobatto quadratures. Implicit Runge-
Kutta methods are also discussed in Gourlay [194], where it
is noted that certain methods stable for linear equations,
i.e., with constant Jacobian matrices, may not be stable
when the Jacobian varies as is the case with nonlinear equa-
tions. The common trapezoidal method is a case in point,
and a stable modification of the same order is given therefor.

Explicit Runge-Kutta methods with provision for intrinsic
truncation error estimation are given in Warten [536],
Sarafyan [448], and Zonneveld [553]. Haines [220] gives a
semi-implicit Runge-Kutta method with the coefficients chosen
to increase stability and with the Jacobian matrix, required
in such methods, evaluated by finite differences. Semi-
implicit Runge-Kutta methods are also given by Allen [3].

Sarafyan [452] fits a Hermite polynomial to the inter-
nodal values of an explicit embedded Runge-Kutta method to
produce a continuous approximation of order only one less
than that of the discrete approximation. Merson [356] gives
Runge-Kutta methods for which each inter-nodal value is
required to be a good approximation of the solution at the
corresponding point. Treanor [519] uses local linearization
before the quadrature to develop a modification of the
Runge-Kutta type. The algebraically.difficult derivation
of the coefficients involved in Runge-Kutta methods is rel-
egated to the computer via a program of Sarafyan and Brown
[447]. Many other Runge-Kutta methods are discussed in
Appendix I.
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The more general inclusion of inter-nodal points along with nodal

points in the quadrature expression for the integral of 4.2 results

in a combination of the above types, variously referred to as multi-

step Runge-Kutta methods or hybrid methods.

Rosen [430] gives an explicit multi-step Runge-Kutta

method using at each node all the inter-nodal values used

at the previous node, with a resultant decrease in the number

of evaluations per step required for a given order.

Finally, in the manner already discussed above, the inclusion of

nodal and/or inter-nodal points beyond the node presently under con-

sideration produces block methods of the Runge-Kutta or hybrid type,

requiring simultaneous solution for all the unknown nodal and/or

inter-nodal values involved.

Block Runge-Kutta methods in which the iteration at each

node is intentionally not carried to convergence are discussed

by Rosser [433]. These methods require fewer evaluations per

step for a given order than the usual point Runge-Kutta methods.

Multi-value Methods

At each nodal point, one may write, more generally, the value of

the dependent variable, any of its derivatives, and any functions or

combinations thereof as linear combinations of these quantities at

each node and/or at inter-nodal points, and so produce the almost

all-inclusive class of multi-value methods.

Methods of this type are discussed in general in Gear [177].
Methods with variable step size are discussed in regard to

stability in Tu [520].

The entire class of quadrature methods discussed above is a sub-

class of the multi-value methods for which the value of the dependent

variable, y, at only one previous nodal point is involved, and the

linear combination includes only the first derivative, y' = f (t, y).
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The use of values of only the dependent variable and its first de-

rivative in the linear combination produces the linear multi-step methods.

These methods are explicit if only values of the derivative at previous

nodes are included, semi-implicit (commonly called implicit) if the de-

rivative at the presently-considered node is included as well but none

beyond, and implicit (commonly called "block") if nodal values beyond

that presently under consideration are included. The latter types re-

quire, respectively, the solution of a nonlinear equation at each node

or the simultaneous solution of a system of equations for all the unknown

nodal values involved. Again inter-nodal points may be included as well,

and the so-called hybrid methods developed as discussed above. The more

common types of predictor-corrector methods, in which values are "pre-

dicted" by explicit multi-value forms and then "corrected" using implicit

multi-value forms involving the predicted value as well as previously

calculated values are in this class. Additional applications of the

corrector may follow, using the most recently corrected values.

Hull and Creemer [244], in a comparison of various predictor-
corrector forms, state that error, stability, and the order re-
quired for a given error at least computation are less sensitive
to order with two corrector applications than with one, with no
significant improvement thereafter. Lambert [308] shows the equiv-
alence of any predictor-corrector method using a finite number of
corrector applications to some explicit multi-step method. This
limits the expectations for stability of predictor-corrector
methods. Donelson and Hansen [129] use a set of correctors ap-
plied cyclically over a set of time steps and thus achieve higher-
order stable methods than are possible with the same corrector
used at all steps. Order 2k-1 is thereby achieved for stable k-
step methods, as opposed to the maximum order, k-l, possible with
stability for methods using only a fixed corrector. The use of
variable step size in predictor-corrector methods has been con-
sidered by Van Wyk [532], and in a single-step method of the
multi-step form by Richards, Lanning, and Torrey [419]. Other
predictor-corrector methods are given in Appendix II.

Many multi-step methods have been developed in which some
coefficients are chosen to increase stability as in Krough [291],
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with a comparison of stability plots for various methods;
Crane and Lambert [96]; Nigro [383]; Rahme [406], with an at-
tempt to minimize-error while maintaining stability; and Lomax
[332], considering Runge-Kutta and hybrid methods as well. A
multi-step method with the coefficients chosen to fit the
characteristic roots to some of the characteristic exponentials
of-the differential system is given by Miranker [366] for non-
linear systems with local linearization, the method being
implicit, and for linear systems by Liniger and Willoughby
[323], an explicit method. Osborne [398] gives a single-step
method with the nodes chosen to give desired characteristic
roots. Timlake [518] increases the stability of multi-step
methods by averaging over previous steps, determining the
weights from the Jacobian eigenvalues. The stability of multi-
step methods has been analyzed particularly in Karim [258,256],
sufficient conditions for instability being given in the
former and the effect of the predictor as well being in-
cluded in the latter; Dahlquist [100-106], a series of classic
papers; and Hafner [217], giving stabtlity charts for a
large number of Runge-Kutta and hybrid methods as well.

Implicit multi-step methods particularly for stiff
systems have been giveniby Ratliff [411], giving a com-
parison of several methods; Jain and Srivastava [246,247];
Dill [126], a systematic search for such methods; Gelinas
[182]; Dill and Gear [125], again a search; and Gear [172].
Such methods achieve a particular shape of stability
boundary suitable for stiff systems by always including
the derivative at the present node with perhaps the deriv-
atives at a few previous nodes.

Tyson [521] gives an implicit multi-step method for
nonlinear systems using local linearization about a predicted
value, rather than the previous nodal value, that achieves
order two greater than that of the predictor used. (Local

linearization is used in many methods to render nonlinear
systems tractable by methods restricted to linear systems,
but such linearization about the previous nodal value re-

stricts the order to two regardless of the method used.)
Boggs [30] used Broyden iteration (involving direct approxi-
mation of the Jacobian inverse rather than inversion of the
Jacobian) with implicit multi-step methods. Block methods
are given by Daniel [109,108] and by Shampine and Watts
[469]. Methods for determining the necessary set of starting
values (a problem equivalent to the development of block
multi-step methods) have been given in Reimer [412],
Rakitskii [407], and Alonzo [4].

The addition of inter-nodal points (hybrid methods) has
been considered by Papian and Ball [399]; Lomax [332], who
gives a method for choosing the coefficients in explicit
methods of this type to improve stability; Gragg and Stetter
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[195]; discussing the coefficients therein for maximum
order; Gear [175]; and Hafner [217], who gives a large
number of stability charts. Additional consideration of
multi-step methods has been given by Spijker [492], con-
sidering the question of direct application to higher-
order equations or a split to a system of first-order
equations, and by Zverskina [555], using derivatives only
at previous nodes separated by some distance from the
present node.

Various other quantities, such as higher derivatives and divided

differences, have been included in the linear combination, and methods

using one type of quantities may be derived by transformation of

methods using another type as in Osborne [395] and Kohfeld and Thompson

[283]. Again the above-mentioned ramifications involving inter-nodal

points and/or nodal points beyond that presently under consideration

may be developed. A further modification is that values at previously

passed nodes may be subsequently changed. It is possible to derive

methods of this type that use higher derivatives or higher-order

divided differences, all of which are produced at each node from linear

combinations of the same, in lieu of values at previous nodes. In

this manner more efficient step size change can be accomplished.

In Grobner, Kohnert, Reitberger and Wanner [207] higher
derivatives are included in generalizations of both implicit
Runge-Kutta and multi-step type methods. Multi-value methods
involving higher-order derivatives are discussed in Gear
[177,178]; Sloan [484]; Lewis and Stovall [321]; and Nordsieck
[387], a single step form with ease of step-size change; and
Osborne [395]. Kohfeld and Thompson [283] give a method
using higher derivatives and inter-nodal points. The single-
step implicit method of Urabe [522] uses second derivatives.
Makinson [348] gives a single-step implicit method using
higher derivatives, the form being specially constructed to
preserve the original sparseness in the matrix solution of
the implicit equations. Lomax [334] presents a single-step
implicit method using second derivatives with coefficients
chosen to increase stability. Ehle [132] and Davison [110]
also give single-step methods using higher derivatives, and
Reimer [414] analyses multi-step methods using higher deriva-
tives.
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Non-Polynomial Interpolates

In the great majority of methods the linear combinations involved

in the multi-value methods, and thus in the quadrature methods, are

required to be exact when the dependent variable is a polynomial of

some degree. This restriction may be relaxed, and an even broader

spectrum of methods may be developed by requiring these linear combina-

tions to be exact for some other function, in particular for perhaps

some class of functions especially adapted to the particular differential

equation being considered.

Loscalzo and Talbot [339] use a spline function with the
higher derivatives matched at the nodes, which, while pro-
ducing the same nodal values developed by a multi-step
method, is a single-step method and gives a piecewise con-
tinuous approximation. It does, however, require differentia-
tion. Byrne and Chi [45] use a spline approximation of the
intergrand in a quadrature type method requiring no differentia-
tian. Callender [71] uses a spline approximation spanning
several nodes to develop a block multi-step method.

Blue and Gummel [27] and Lambert and Shaw [306] use
rational function approximation of matrix exponentials, the
former using coefficients chosen to increase stability and
producing thereby Pade approximates of the exponential.
The latter method matches higher derivatives and thus re-
quires differentiation. Roe [84] gives a multi-step method
using a combination of a polynomial and an exponential as
the interpolate. Other non-polynomial interpolates have been
used by Shaw [475], Lambert and Shaw [303], and Pope [403],
the first two being primarily of use when singularies are
involved in the solution.

Only a relatively small number of methods of this type have

been considered, since the intention of most developments has been to

develop methods that may be applied at least fairly well to all types

of differential equations, hence the use of polynomial interpolation.

In this connection the remarks of Lomax [334] are pertinent:

"It is unlikely that 'new' combinations of linear
equations that connect a function, u, and its derivative,
u', at a series of reference points, equispaced or not,
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will improve existing methods for the numerical inte-
gration of general sets of coupled ordinary differential
equations..." (p. 2). "What appears to be needed are
studies of special methods designed for special methods
designed for special classes of equations..." (p. 6).

Iterative Methods

Methods of this class start with some approximate solution,

such as the solution of a related but simpler differential equation or

the result of any numerical method, and improve the approximation by

an iterative procedure. One such method is the Lie series method.

The extrapolation methods by which solutions with successively smaller

truncation errors are obtained by extrapolating results with succes-

sively smaller step-sizes may also be considered iterative in the sense

stated.

In reference [207] Runge-Kutta methods having error ex-
pansions in even powers of the step size are developed to serve
as the basis for these extrapolation methods. Lie Series
methods have been given by Knapp and Wanner [279,280].

Transformation Methods

In methods of this type the dependent and/or independent variable

is transformed before numerical solution in order to obtain a form with

better numerical properties. In this manner stiff systems may be

transformed into systems with smaller ranges of eigenvalues.

Lawson [313] gives a transformation of the dependent
variable which reduces the stiffness of the system, but the
method requires the use of matrix exponentials. A similar
transformation of the dependent variable is used by Jain
[259]. Other transformations of the dependent variable are
given by Decell, Guseman and Lea [117], requiring evaluation
of the Jacobian inverse, and by Calahan [67].

Higher-Order Equations

As is well known, any higher-order differential equation can be

broken into a set of simultaneous first-order equations to which the
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preceding methods are applicable. Generalizations of the classes cited

follow readily, however, so that application may be made directly to

the higher-order equation if such is thought to be preferable. This

is still something of an open question.

Osborne [397] gives a quadrature method for linear higher-
order equations. Day [112,113] has implicit Runge-Kutta type
methods using Gaussian and Lobatto quadrature, respectively,

for second-order equations with no first derivative. Cooper
[91,93] gives a generalization of the implicit Runge-Kutta
methods to equations of any order and states that the split
into a set of first-order equations decreases the local accuracy
and increases the computation required, with little effect
on the global accuracy.

The multi-value methods using higher derivatives are di-
rectly applicable to higher-order equations, and Gear [177]
states also that direct solution of the higher-order equations
may be faster than that of the split system of first-order
equations. Methods of this type are also given in Gear [178,

484] and Allen [2]. Adrianova [1] found less error without
splitting to the first-order system. However, Spijker [503]
states that round-off error is reduced by splitting into first-
order equations.

Conclusions and Directions

Implicit methods in general are much more stable than explicit

methods, but may still be less efficient because of the difficulty

of the solution of the system of simultaneous equations that is

required at each time step. The key to the use of the more stable im-

plicit schemes is thus the iterative solution of this system, and ef-

fort should be directed toward the development of faster and more ap-

propriate iterative schemes for use in these methods. There are, of

course, a great many general iterative schemes that have never been

applied in implicit numerical solutions of ordinary differential

equations.

Block methods with a set number of iterations, such as that of

Rosser [432], can achieve a given order with fewer evaluations per step
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than for point methods and are thus attractive. The number of evalua-

tions required may also be decreased by the retention of previously

calculated inter-nodal values as in the method of Rosen [430].

The many possible forms of the multi-value methods of Gear [177],

in particular those that update previously calculated values, may offer

more efficient methods than the conventional multi-step forms. Stable

methods of higher order than possible for multi-step methods are at-

tainable in this class. Methods of this type may be developed from the

existing multi-step methods by linear transformations, and yet may be

more efficient in computation.

The local linearization of nonlinear systems about a predicted

value, Tyson [521], rather than the value at the previous step, allows

linear methods to be applied without limiting the resultant overall

order for the nonlinear system to two. This procedure has received

little attention but could widen considerably the scope of application

of many methods applicable only to linear systems.

The use of a cyclic set of correctors, Donelson and Hansen [129],

rather than a fixed corrector, over a series of time steps yields

stable methods of higher order than possible with a fixed corrector

and this should be pursued.

Methods using non-polynomial interpolates specialized for particu-

lar systems of differential equations should be considered. Here speed

may quite possibly be gained from the loss of generality. In the same

respect, preliminary transformations of the dependent variable adapted

to the particular differential system should also be considered.
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TABLE I

EQ. RMS TE x 10
-
10

IN

Explicit Runge-Kutta AP- T ET = (RMS TE/2P+1-2)(V/h) x 10x

RKE(p,V) DIX M
1 E hE

-1
.001 .0005 .00025 .000125 .0000625 .00003125 .000015625

ai A.26 1.578x0 1.686x03 1.05x102 6.325 2.683 0

4.206-4 8.99-5 1.10-5 1.349-6 1.145-6

A 1.578x10 1.686x103 1.05x10
2  

6.325 3.578 0
ill(4,4) A.-25 4--------- - - -- - ---- -- --- --- ---------I(4,4) A.25 4.206-4 8.99-5 1.12-5 1.349-6 1.527-6

S1.565x104 1.58x103 1.04x102 6.325 2.951 0
alston(4,4) A.21 4 -- 4.173-4 8.43-5 1.11-5 1.349-6 1.259-6

S-1.006x104 3.95X102 2.24x101 0
-ystrom(5,6) A.34 6---- ----- --1.95x10-4 1.53-5 1.73-6

Butcher(5,6) 3.107x103 1.789 0

gewton-Cotes Quadrature A.386.013-5 2.07-6 1.39-7

awson(5,6) .973x10
8  

4.49x103 1.18x10
2  

3.578 0A.42 6
Newton-Cotes Quadrature A876 8.689-5 4.58-6 2.77-7

4.64x03 1.03xlO
2  

3.130 0
Fehlberg(5,6) A.49 6 ---.. 6A 3 1.03x 3.130 0

8.98-5 4.0-6 2.423-

Luther(5,6) 3.65x10 9.04x102 2.683x101 0
Newton-Cotes Quadrature A.35 6 .------ ----- -------

Newton-Cotes Quadrature 7.05-4 3.50-5 2.08-6

Luther(5,6) 2.88x104 6.90x102 2.06x01 0

Gauss Quadrature A.43 6 5.32-4 2.67-5 -- 1.59-6 -- ---

Luther(5,6) 1.02x10
3  

2.70x102 8.05 0
Radau Quadrature A.44 6 ---------- x-!2 ---. --..... . -
Radau Quadrature 1.976-4 1.05-5 6.234-7

Luther(5,6) 1.02x10
3  

2.70x102 8.05 0
Lobatto Quadrature A.45 6 1.976-4 1.05-5 - -.234-7

Shank(5 A.47 9.898xl011 1.057x10
3  

2.72xl02 1.297x10 0
N-5 7.982+3 1.64-4 8.78-6 8.37-7

11 4 3 2Shanks(5,5) .692x10 1.375x10 1.151xlO 1.127x02 0
N--100 A.47 5 -- - ------ -----------------------

100 .817+3 2.22-4 3.71-5 7.27-6

Modified Shanks(5,4) 2.64x10 4.20x103 4.03x102 0
N-100 A.48 4 3.41- .20- 4.03
N-a 3.41-4-- 1.08-4 2.08-S

Butcher(6,7) 7Butcher(6,7) K 1.046x10 1.19x10 1.789 1.265 1.789 0
ewton-Cotes Quadrature A.57 1.16-4 2.63-6 7.947-8 1.124-7 3.18-7

1.233x1012 2.52xl03 3.54x101 .894 .6325 2.683 0
S a k (6,6) A.67 6-- - - - - - - - - - - - - - - - - - - --- - - - -Shanks(6,6) A.67 6 .872+3 2.4-5 6.75-7 3.407-8 4.819-8 4.04-7

Sarafyan(7,10) .575s103 3.64+1 .949 1.789 0 - -
wton-Cotes Quadrature A.68 10 .80-5 2.87-7 1.49-8 5.635-8

5.18x102 4.427 .894 0
S a k (7.7) A.73 7 - - - - - - - - - - - - - - - - - - - - - - - -:- - - - -Shanks(7,7) A.73 7 2.85-6 4.88-8 1.971-8

.108x104 9.41x101 .949 1.342 2.530 5.367 0
Curtis(8,11) A.75 11 -- -- ------ ----- ---------urti(8,11) A.75 11 .704-5 . 4.06-7 8.18-9 2.315-8 8.728-8 3.704.-7

.949x104 9.21xl01 .949 1.789 2.530 5.367 0
Shanks(8,10) A.77 10 781-5 3.62-7 7.44-9 2.806-8 7.931-8 3.368-7

The signed number following each entry indicates multiplication by the corresponding power of 10.



31

TABLE II
-10EQ. VRMS TE 10 -

EQ. V

MULTISTEP IN T ET = (RMS TE/2p1-2)(V/h) 10x
METHOD AP- I

PEN- h -
DIX

.0005 .00025 .000125 .0000625 .00003125

AB(3,3) 31 2 1.54x104 1.955x103 0
M(3,2)(PECE) 55 8.80-6 2.23-6

A(3 3) 31 2 X 6.75x103  1.185x103 0
, 56 1.80-6 6.32-7

AB(3,3) 31 X 7.77x103  1.07x103 0
, 3)--C--- 56 1.035-6 2.85-7

C_(44) 4 X - 4.24x102 40.6 0

M43)(PCE) 56 2 2.26-7 -- 4.3--

Butcher Hybrid 1 X 1.71x103 57.2 0
fifth order 3 3.30-7 2.22-8

CK(44) 4 X 4.12x103 1.55x102  31.7 0
Wesson(5,5)(PECE) 73 5.3-7 4.0-8 1.5-

AB(4.4 32 X 2.57x103 6.09x102 0

(6,5)(rECE) 58 2 6-7 1.73-7

ro(44) 25 2.61x103 3.46x102 0

65PECE 58 2 5.23-7 9.85-8

(4,4) 32 1 1.40x104 2.46x103 0

(6,5)( 58 1 1. 3.53-7

(44) 25 X 1.40x104 2.46x103 0
,5 ) 58 1.40-6 3.53-7

K(4,4) 4 X 1.537x103 82.6 0
A W(,5?i 58 29.77-- 1.05-8

1-, 4 1 4.81x10 3  3.13x102 0
6 -5 58 1.55-7 1.99-8

AB(8 8) 36 X X 2.1x103 7.9x102 0
8!,F C-ET 60 6.58-8 .97-8

4 4 2 X 85. 22.8 0
7"E-7 60 2.0-9 1.3-10

CK(44 4 X - 96.5 24. 0
es ii ETn -'2 74 .3-9 1.50-10
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figure 1. W 3 and q3 up to T = .25 (quarter of an orbit).
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APPENDIX I

RUNGE-KUTTA METHODS

This appendix is intended as a reference for various Runge-Kutta

methods available in current literature.

Short form notation will be used henceforth: an Explicit p order,

V stage Runge-Kutta method is written as RKE(p,V).

RKSI(p,V) - semi-implicit

RKI(p,V) - implicit

RKMS(p,V) - multi-step

The Runge-Kutta coefficients will be presented in the following

form:

c a

T
w

M.
1

k.= hf(T n + cih, Y + a..k.)
i=l

V 
A.1

Yn+l = Y n + w iki

i=l i = 1,2,---V

M. V

In the following sections various references, where different

Runge-Kutta methods may be found, are listed.

Many authors have developed the equations leading to the deriva-

tion of the coefficients defining a particular order Runge-Kutta

method. These equations will be henceforth called the deriving equa-

tions; and these authors will be listed first. If a reader desires

to develop his own Runge-Kutta method, he can do so by solving the
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deriving equations. The field is still wide open, many Runge-Kutta

methods can still be developed.

A.1 Explicit Runge-Kutta Methods

RKE(p,V):

Restating the equations for a RKE(p,V)

i-1
k. = hf[T + c h, Y + C a..k.]

S n i n j=l
5=1

with cl = 0 A.2

V i=1, 2---V
Yn+l= Y + w.k.

n+1 n L ii
i=l

The deriving equations for a RKE(p,V), based on a Taylor series

analysis, (as developed in Ch. 2) are listed in; Butcher [3], up

to a 8th order method; and Fehlberg [4, 12], up to a 8th order method.

A formulation for solving the non-linear deriving equations, for

a RKE, on a computer is being developed and the principle is listed

in Sarafyan and Brown [7].

The tedious Taylor series analysis for the deriving equations

can be replaced by a, practically, equally tedious 'Quadrative

Method.' The Quadrative Method for the deriving equations is,

however, a more convenient form for use, as it is general for any

older method, unlike the Taylor series form° Quadrative form de-

riving equations for any order RKE's are listed in Rosen [5].

An excellent reference for the general Runge-Kutta class of

methods, all in one handy cover, is Lapidus and Seinfeld [6]. This

book also lists commonly used Runge-Kutta methods of various orders.



References for RKE of specific orders are now listed. References

for deriving equations will be given first, these will be the deriving

equations of that specific order method.

A.1-1 RKE(1,1):

The famous (infamous?) Euler method may be considered to be such

a method

0 0 Euler

1 A.3

A.1-2 RKE(2,2):

The deriving equations, specifically for a RKE(2,2) are listed

in Ralston [8] and Fehlberg [12]. In Ralston [8] the free parameter

was manipulated to give a Minimum Truncation Error Bound, henceforth

referred to as TEB. It must be noted here that, the truncation error

is not minimized but rather its bound is minimized. This may or may

not result in a minimized truncation error. However, as the exact

value of the truncation error depends on the differential equation

being integrated, this course is the only one open for optimizing

a method. Bounds of these kinds are quite conservative.

Lapidus and Seinfeld [6] list 3 such methods. One of them, the

Heun form, is Ralston's optimum.

0 Heun

2/3 2/3 (optimum)

1/4 3/4 A.4
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0

1/2 1/2 Mid-point Rule

0 1 A.5

0

1 1 Euler-Cauchy

1/2 1/2 A.6

dYWhen is independent of Y, the Heun form becomes a 3rd order

method. Johnston [9], Kuntzmann[10], and King [11] also find opti-

mum methods, these are the Heun form, eq. A.4.

Fehlberg [12] has developed methods of order p, coupled with a

p+l order method. Suitable choice of free parameters is made so as

to minimize the leading term of the truncation error. This results

in a larger permissable step size. Comparison of the solution of the

p+l order with the p order is used to control step size.

The p+l order shares most of the coefficients of the p order;

hence with only 1 or 2 additional stages, a p+l order solution is

available. Though the Fehlberg methods require more stages than

conventionally used; this extra calculation results in stepsize con-

trol, which is well worth the cost.

The automatic step size control feature of these Fehlberg

methods make them computationally more efficient (speed and overall

number of function evaluations), than conventional .methods. This

is so; because when step size controls, like the Richardson Extrapo-

lation procedure (see Lapidus and Seinfeld [61), are applied to

conventional methods; the computational effort doubles. In the

opinion of the author; these methods when used without the coupled
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rl order method, are still useful because the TEB has been carefully

minimized. The p+l order method can also be used by itself.

Henceforth Fehlberg methods will be written as: RKE[(p,V);

(p+l, V+n)] n = 1,2,3---

Fehlberg [12] RKE[(2,2); (3,)]:

0

p=2 1 1 Fehlberg

p=3 1/2 1/4 1/4 A.7

1/2 1/2 - w's for p=2

1/6 1/6 2/3 - w's for p=3

0

1/4 ..1/4 Fehlberg

p=2 27/40 -189/800 729/800 A.8

p=3 1 214/891 1/33 650/891

214/891 1/33 650/891 p=2

533/2106 0 800/1053 -1/78 p=3

A.1-3 RKE(3,3):

The deriving equations for such methods are listed in Fehlberg

[12], and in Ralston [8], as a two parameter family. In Ralston [8]

the TEB was minimized by suitable choices of the two free parameters,

and the 'optimum' method is:

0.

1/2 1/2 Ralston Optimum

3/4 0 3/4 A.9

2/9 1/3 4/9
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Johnston [9], Kuntzm4nn.[10] and King [11] also list such opti-

mum methods.

The two optimum methods of King [11] are, however, of a fourth

dY dY
and fifth order when - is independent of Y. Whenq is dependent on

Y his methods have a slightly larger TEB than Ralston's method (the

method which becomes fourth order has a slightly smaller TEB than

the method which becomes fifth order.)

0 King optimum (when

dY
1/3 1/3 d- independent of

5/6 -5/12 5/4 Y--fourth order)

1/10 1/2 2/5 A.10

0

.3550510257 .3550510257

.8449489743 -.4021612205 1.247110195

.1111111111 .5124858262 .3764030627

King optimum (when

dY
d- independent of

Y--fifth order)

A.11

0

(10-2/11) (10-2v1 3) Kuntzmann
6

optimum

(i+6/) -.0581020 .8256939
6 A.12

.2071768 .3585646 .4342585
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Lapidus and Seinfeld [6] list three methods:

0 Classic

1/2 1/2 A.13

1 -1 2

1/6 2/3 1/6

0 Heun

1/3 1/3 A.14

2/3 0 2/3

1/4 0 3/4

0

2/3 2/3 Nystrom

2/3 0 2/3 A.15

1/4 3/8 3/8

Fehlberg [12] gives methods which incorporate automatic step

size adjustment .

Fehlberg [12] RKE[(3,4); (4,5)]:

0 Fehlberg

1/4 1/4 A.16

4/9 4/81 32/81

p=3 6/7 57/98 -432/343 1053/686

1 1/6 0 27/52 49/156
p=4

1/6 0 27/52 49/156
-. --. p=3
43/288 0 243/614 343/1872 1/12 p=4
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0 Fehlberg

2/7 2/7 A.17

7/14 77/900 343/900

p=3 35/38 805/1444 -77175/54872 97125/54872

p=4 1 79/490 0 2175/3626 2166/9065

79/490 0 2175/3626 2166/9065 p=3

229/1470 0 1125/1813 13718/81585 1/18 p=4

The Fehlberg coupled second order methods, eqa. A.7 and A.8,

could be used as third order methods.

The author developed optimum methods of a special kind, these

methods require only two, instead of three function evaluations per step.

I. Back Step Method:

0

-24/100 -24/100 A.18

76/100 19627/10200 -475/408

409/684 -7/36 36/57

Butcher [18] developed such fifth order processes, using negative

c's. This back step method has a built-in advantage: in every step

except the first; k3 from (T, 1/n) may be used as the k2 for (Tn+I Y n)
This results in one less function evaluation per step, hence has V = 2
rather than V = 3, a considerable advantage. A disadvantage of back step

methods is that a starting method is required. For a starting method

solve the deriving equations with c3 76 and any choice of c2
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II. Front Step Methods:

0

1 1
A.1910 10 A.19

1 133 151 -4 -- 5 -
10 170 17

5 1 17-1-- 2-
22 6 66

0

1/100 1/100 A.20

101/100 -990103/19700 10000/197

-9994/606 103/6 197/606

These front step methods have a built in advantage: in every

step except the last; k3 from (Tn Y) may be used as the k2 for

(Tn+l' Yn+l) . Like the back step method, this results in a V = 2

rather than V = 3 method. The front step method is self starting

and so has an advantage over the back step method.

Each of the methods eqs. A.18, A.19 and A.20 was optimized using

the procedure found in Ralston [8]. The c2 's and c3's were inter-

changed: a TEB was calculated using a particular c2 and c3 ; then an-

other TEB was calculated using the same c2 as a c3 , and the same c3
as a c2 . Eqs. A.18, A.19 and A.20 are the resulting optimum methods.

Method (p, V) Error Bound (TEB)

Ralston A.9 (3,3) .1111 ML3h4

King A.10 (3,3) .1389 ML3h4

King A.11 (3,3) .1391 ML3h4

Classis A.13 (3,3) .5 ML3h4

Heun A.14 (3,3) .6667 ML3h4

Nystrom A.15 (3,3) .25 ML3h4

Back step A.18 (3,2) .3493 ML3h4

Front step A.19 (3,2) .3933 ML3h4

Front step A.19 (3,2) .3649 ML3h 4
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A.1-4 RKE(4,4):

More has been written and analyzed about the RKE(4,4) than any

other Runge-Kutta method. The references listed here try to sample

all the aspects of these methods.

The deriving equations are listed in Butcher [3], Rosen [5],

Ralston [8], and Fehlberg [12].

Ralston [8] gives an optimum method (minimum TEB).

0

.4 .4 Ralston Optimum

.45573725 .29697761 .15875964 A.21

1 .21810040 -3.05096516 3.83286476

.17476028 - .55148066 1.20553560 .17118478

In King [11], two optimum methods are derived, both whose TEB's

are larger than Ralston's optimum, eq. A.21. The first of these be-

dYcomes fifth order, and the second, sixth order when is independent
sT

of Y.

0 King

(4- 7)-) 4 - V) A.22
10 10

(4 + V6) -(11 + 4 /) (42 + 13V6)
10 25 50

1 (1 + 5/) -(3 + 2) (9 - 6)
4 2 4

0 (16 - V') (16 + / ) 1
36 36 9



0 King

(5 - /i) (5 - /) A.23
10 10

(5 + /f) -(5 + 3/5) (3 + vr)
10 20 4

1 (-1+5V5) -(5 + 3) (5 - /)
4 4 2

1 5 5 1
12 12 12 12

Kuntzmann [10] developed an optimum method close to Ralson's

optimum, eq. A.21.

0 Kuntzmann

2/5 2/5 A.24

3/5 -3/20 3/4

1 19/44 -15/44 40/44

55/360 125/360 125/360 55/360

Hull and Johnston [13] point out that, c2  .35 and c3  .45

(solve deriving equations for remaining coefficients) lead to a

minimum TEB. As previously mentioned in A.1-2, these bounds are

usually larger than the actual error.

Lapidus and Seinfeld [6] list four methods; one of these,

the Gill form, is optimized for round-off errors (has a larger

TEB than Ralston's optimum).
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0 Gill

1/2 1/2 A.25

1/2 (72 - 1) (2 - r2)
2 2

1 (+ (/2 )
2 2

1/6 ('2 - 2) (v2 + 2) 1
6 6 6

o Classic

1/2 1/2 A.26

1/2 0 1/2

1 0 0 1

1/6 1/3 1/3 1/6

0 Kutta

1/3 1/3 A.27

2/3 -1/3 1

1 1 -1 1

1/8 3/8 3/8 1/8

Method (p,V) Error Bound (TEB)

Ralston A.21 (4,4) .0546 ML4h5

King A.22 (4,4) .0944 ML 4h5

King A.23 (4,4) .1218 ML4h5

Gill A.25 (4,4) .0882 ML 4h 5

Classic A.26 (4,4) .1014 ML4h5

Kutta A.27 (4,4) .0991 ML4h5

Tests made by the author showed that the Gill and Classic forms

are equal on accuracy while the Ralston form is superior to both these.



Hull [19] gives a good discussion on the problem of optimizing

Runge-Kutta and predictor-corrector type methods.

The ambivalence of the minimum TEB measure can be pointed out;

according to Luther and Sierra [14], using their own minimum TEB

measure, the Kutta form, eq. A.27 is optimum for truncation error.

Blum [15] claims to wipe out the optimum round-off error ad-

vantage of the Gill form, eq. A.25, by modifying the arithmetic

(computer) sequence of the Kutta form, eq. A.27, making it comparable

to the Gill form. Fyfe [16] extends this procedure to any RKE(4,4)

(though these modifications require extra programming effort).

Lawson [17] derives a RKE(4,4) with an extended region of sta-

bility; for integrating ordinary differential equations with large

Lipschitz constants. This is comparable to the other RKE(4,4)'s

on accuracy but can take larger step-sizes. Gates [26] gives a

RKE(4,5).

Fehlberg [12] lists two methods with his usual feature of

automatic step size control (see section A.1-2). Also eqs. A.16

and A.17, Fehlberg third order methods, have fourth order methods

coupled, these can be used separately as fourth orders.

0 Fehlberg

2/9 1/9 A.28

1/3 1/12 1/4

3/4 69/128 -243/128 135/64

p=4 1 -17/12 27/4 -27/5 16/15
--------------------

p=5 5/6 65/432 -5/16 13/16 4/27 5/144

1/9 0 9/20 16/45 1/12 p=4

47/450 0 12/25 32/225 1/30 6/25 p=5
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0 Fehlberg

1 1 A.29
4

3 3 9
8 32 32

12 1932 7200 7296
13 2197 2197 2197

439 3680 845
p=4 1 -8

216 513 4104

1 8 3544 1859 11
p=5 27 2 2565 4104 40

25 1408 2197 1
216 2565 4104 5

16 ! 6656 28561 9 2

135 12825 56430 50 55

Sarafyan [28] RKE[(4,4); (5,6)]

0

1 1
2 2 Sarafyan

1 1 1
24 A.30

p=4 1 0 -1 2

2 7 10 1
0 --

3 27 27 0 27

1 28 125 546 54 378
p=5 5 625 625 625 625 625

11 0 2 1
6 3 6 p=4

14
1- 0 0 35 162 125

336 336 336 p=5

Fehlberg [12] tested the above three methods, eqs. A.28, A.29

and A.30. Eq. A.28 was the best on accuracy, while eq. A.29 was the
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worst. On time eq. A.29 was the besf while eq. A.30 was the worst.

All these three methods, by the same test were faster and more accu-

rate than the Kutta form, eq. A.27. The time savings of these three

methods is a result of their automatic step size control feature.

Sarafyan [37] shows that the Classic form, eq. A.26, has em-

bedded within it first, second and third order methods. This is

naturally expected of a fourth order method. This embedding prin-

ciple of Sarafyan can be used to monitor step size. Using eq. A.26:

y[l] + [ 2 ] y + w
n+l n Y + kl'. Y + k2 with Y +4] available by the completenll n 1 n+l n 2 n+l

calculation of the method. So here Y 2] (second order accuracy 1/n)

is available at no extra cost. Comparing Y 2] and Y [4]
ng n+l n+l gives step

size control. Yn[3 is not directly available, it is available atn+l -

% and not at h; so to use it for step size control requires extra

effort.

This embedding principle can be extended to any order method,

and is a built in advantage of the Runge-Kutta methods.

Various authors have studied the errors involved in fourth

order Runge-Kutta methods and developed embedding methods to check

these errors and hence institute step size control; regions of sta-

bility have also been studied. These authors are: Merson [29],

Scraton [20], England [21], Ceschino and Kuntzmann [32], Collatz [33],

Lotkin [34], Chai [35], Sarafyan [36,37], Karim [38], Warten [29],

Shampaine and Watts [40], Christiansen [41], and O'Regan [42].

Henrici [43] shows how to control round-off error.

Computer programs using fourth order processes with automatic

step size control are listed in Basnett [69] (uses the England [31]

method), and in Jones [70] (uses the Classic, eq. A.26, method).
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The author, using the same principle outlined in section A.1-3,

has developed two new classes of RKE(4,4)'s:

I. Back-step RKE(4,4):

0 Optimum

-.1 - .1 A.31

.9 4.65 -3.75

1 7.44 -6.24 - .2

1.06 - .61 1.11 -.56

Error Bound (TEB) < .22254 ML4 . If for this method c 3 = .1

and c2 = .9 was used, the bound would be < .50641 ML , more than

twice that of eq. A.31. This happens in every case, for the co-

efficients of a back step method; so it is better to have c2 as

the negative back step coefficient rather than c3. One function

evaluation per step is saved here as the k3 of (Tn, Yn) can be used

as the k2 of (Tn+1, Yn+). This method is not self-starting, and

needs a regular fourth order method with c3 = .9 to start it.

0 A.32

-1/2 -1/2

1/2 3/4 -1/4

1 -2 1 2

1/6 0 2/3 1/6

Error Bound (TEB) < .26181 ML4. This method is close to the

optimum, has simple coefficients, and can use either the Classic

or the Gill form as a starting method.
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II. Front Step Method (4,3):

0

.01 .01

1.01 -50.52 51.53

1 -48.557981 49.548558 .009423

- 8.080858 8.585858 -8.085804 8.580804

Error Bound (TEB) < .23178 ML4. Here again, as in the case of
Back Step methods interchanging values of c2 and c3 results in
a bound nearly twice as large, i.e., < .43719 ML4 for c2 = 1.01 and
c3 = .01. For this method the k3 of (Tn Y ) can be used as the k2
of (Tn+l, Yn+l). One major advantage over the Back Step methods is
that the Front Step methods are self starting. The optimum Front
Step eq. A.33 has a bound not much larger than the optimum Back Step
eq. A.31; so the Front Step methods should have great potential.

As there are only two free parameters in the fourth order case,
a back and front step (V = 2) fourth order method is not possible;
but as the fifth order case has five free parameters a back and
front step fifth order is possible. The author is working on such
fifth and higher order methods.

On comparing error bounds with the other fourth order methods
it is seen that the bounds of the Front and Back step methods are
much larger; this is to be expected, and is the price paid for
achieving V = 3 in a fourth order method.

A.1-5 RE (5,6):

The RKE(5,6)'s are claimed by many exponents, in the Runge-Kutta
field, to be the best compromise between accuracy and computational ef-
ficiency (computer time).
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The deriving equations are presented in Butcher [3], Fehlberg [4],

Luther and Konen [20], Luther [21], Konen and Luther [22]. These also

give general solutions to the deriving equations. The last three

references explore the complete range of solutions possible, in terms

of two and one parameter families. These lead to various Newton-

Cotes, Gauss, Radan and Lobatto family of formulae. Cassity [23],

Cassity [24] and Lawson [25] also state and solve the deriving equa-

tions generally in terms of various free parameters.

Rosen [4] gives deriving equations using the Quadrative approach.

Lapidus and Seinfeld [6] also list a number of RKE (5,6) in-

cluding the Kutta form corrected by Nystom.

0

1/3 1/3 Nystrom

2/5 4/25 6/25 A.34

1 1/4 -12/4 15/4

2/3 6/81 90/81 -50/81 8/81

4/5 6/75 36/75 10/75 8/75 0

23/192 0 125/192 0 -81/192 125/192

I. RKE(5,6) of Newton-Cotes quadrative Familv:

0

1 1 Luther [21]

1 1/2 1/2 A.35

1/4 14/64 5/64 -3/64

1/2 -12/96 -12/96 8/96 64/96

3/4 0 -9/64 5/64 16/64 36/64

7/90 0 7/90 32/90 12/90 32/90
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1 1 Luther [21]

1/2 3/8 1/8 A.36

1 -1/2 -1/2 4/2

1/2 4/64 -5/64 20/64 -3/64

3/4 12/64 9/64 -12/64 7/64 32/64

7/90 0 12/90 7/90 32/90 32/90

0

1/8 1/8 Butcher [18]

1/4 0 1/4 A.37

1/2 1/2 -1 1

3/4 3/16 0 0 9/16

1 -5/7 4/7 12/7 -12/7 8/7

7/90 0 32/90 12/90 32/90 7/90

0

1/4 1/4 Butcher [18]

1/4 1/8 1/8 A.38

1/2 0 -1/2 1

3/4 3/16 0 0 9/16

1 -3/7 2/7 12/7 -12/7 8/7

7/90 0 32/90 12/90 32/90 7/90

This Butcher form, eq. A.38, is recommended by Lapidus and

Seinfeld [6] (after extensive tests) as the best RKE (p,v) to use.

Also Sarafyan [44] uses this form for an ingenious error analysis,

C~ CiN
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hence this form is highly recommended. The author's test show this

method to be the best RKE(5,6) on accuracy.

0

-1/2 -1/2 Butcher [18]

1/4 5/16 -1/16 A.39

1/2 -3/4 1/4 1

3/4 3/16 0 0

1 0 -1/7 12/7 -12/7 8/7

7/90 0 32/90 12/90 32/90 7/90

This Butcher form is of the back step type, discussed in section

A.1-3. This allows in all steps after the first, to use k4 from

(Tn, Yn) for the k2 of (Tn+1,Yn+1 ). Hence, overall, this method

requires V = 5 instead of V = '6. Another such method is (not of the

Newton-Cotes family):

0

-1/5 -1/5 Butcher [18]

2/5 4/5 -2/5 A.40

1/3 7/36 0 5/36

4/5 0 0 4/5 0

1 1/4 0 -35/4 54/7 25/14

5/48 0 0 27/56 125/336 1/24

Here c2 = -1/5 c5 = 4/5 so allows the use of k5 from (TnY ) for

the k2 of (Tn+lYn+). The larger number of zeros present in eq.

A.40 as compared to eq. A.39 should make eq. A.40 more computationally

efficient than eq. A.39.
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The extra programming effort required to save the k's from a

previous step, for use at a present step, is trivial.

Another Butcher [18] method, which can be used to start eq. A.40,

is:

0

1/5 1/5 Butcher [18]

2/5 0 2/5 A.41

1/3 7/36 0 5/36

4/5 0 0 4/5 0

1 1/4 0 -35/4 54/7 25/14

5/48 0 0 27/56 125/336 1/24

Lawson [25] claims a form, similar to his RKE(4,4). This method

has an extended region of stability:

0

1/2 1/2 Lawson-form

1/4 3/16 1/16 A.42

1/2 0 0 1/2

3/4 0 -3/16 6/16 9/16

1 1/7 4/7 6/7 -12/7 8/7

7/90 0 32/90 12/90 32/90 7/90

The author's tests confirmed that this Lawson form, eq. A.42,

does have a larger region of stability than other RKE(5,6)'s, and so

can take larger step sizes. On accuracy this form is as good as the

Bulcher form, eq. A.38. These two are the best RKE(5,6)'s on

accuracy.
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ii. RKE(5,6) of the Gauss Quadrative family:

0

1 1 Luther and Konen [20]

1 3 1 A.J3
2 8 8

1 1 41 -- -- 4
2 2 2

(5 - 1v ) 1- 5 10 (60 - 8/15 45
10 100 100 100 100

(5 + /iT) (-6 - ViT) 2 12 (6 - /1-) 4/i-
10 20 20 20 20 20

8 5 5
18 18 18

III. RKE(5 6) of the Radau Quadrative family:

0

4 4
11 11 Luther and Konen [20]

2 9 11 A.44
5 50 50

11 151 0 41
4 4

(6 - Jv) (81 + 9 6) 0 (255 - 55V') (24 - 14/6)
10 600 600 600

(6 + /) -) (81 - 9 ) 0 (255 + 55/7) (24 + 14,7)
10 600 600 600

4 0 0 0 (16 + /) (16 - )
36 36 36

The deriving equations for the Radau family of RKE(5,6)'s are

given and solved in terms of free parameters in Luther [21] and

Konen and Luther [22]. The above equation is one such solution.
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IV. RKE(5,6) of the Lobatto Quadrative family:

0

1 1
2 2 Luther and Konen [20]

(5- 1 ) 2 (3 - A.45A.4510 10 10

1 1 1
2 4 4

(5 + V) (1 - r) .. 4 (5 + 35) 8
10 20 20 20 20

(Y5 - 1) (2/ - 2) (5- r5) 8 (10- 2r5)
4 4 20 4 4

1 5 0 5 5
- 0 12 12 12

0

1 1 Luther [21]

1 3 1S- A.462 8 8

1 1 1 4
2 2 2

(5 - 5) (25 - 7/5) (5 - 5/5) (20 + 4F) 2/
10 100 100 100 100

(5 + r) (3 + V5) (1 + r) (4 - 4 Y) 2 4/5
10 20 20 20 20 20

1 0 0 1 5 5
12 12 12 12

Konen and Luther [22] solve the deriving equations of the

Lobatto family in terms of free parameters. The above two equations

are two such solutions.

The advantage of the Newton-Cotes, Gauss, Radau and Lobatto

dYfamilies is that when - is independent of Y, they become sixth

order quadrative formulae of these families.
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Luther and Konen [20] point out that, on basis of computational

efficiency, due to the number of zeros present, the Gauss and Radau

forms are better than the Lobatto forms, which in turn is better

than the Newton Cotes form. While 'a round-off error minimization;

following the principle outlined in Gates [26], shows that on

accuracy (based on round-off error), the Lobatto form is better than

the other three.

Shanks [27] developed a class of RKE(5,5)'s rather than RKE(5,6)'s.

This was done by solving the non-linear deriving equation approxi-

mately, not exactly, resulting in one less function evaluation. The

theory for reducing V for RKE's is also given here for p : 7, making

it possible to derive more efficient formulae as compared to the con-

ventional approach. However, it must be pointed out that (in the

opinion of the author) methods derived this way are not exactly p

order, though they are greater than p-1 order. This is because the

truncation error, in such methods has a larger bound. The author's

tests confirmed that Shank's RKE(5,5)'s are faster, though less

accurate than, RKE(5,6)'s.

0

1 1
1000N 1000N Shanks [27]

3 .(-450N + 3) 450N A.47
10 10 10

3 (2250N - 9) 2250N 15
4 8 8 8

1 (-103500N + 459) 103500N 490 112
81 81 81 81

105 500 448 811134 0 1134 1134 11341141134 1134 1134
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Shanks suggests that 1200 Nh 2 > 1 be chosen to give a valid

fifth order method. The author tested values of N from 100,000 to

.0001 and found that N Z 10 gave discrepencies in the coefficients,

while N < 10 does give a valid method. Shanks suggests N = 9.

The author's test with various values of N showed that N = 5 gave

the most accurate method.

The author modified the Shanks form to give a method of four

instead of five stages. This was done by using N = 100, resulting

in 2  1= 1 . As c2 is much smaller than c3, c4 or c5 ; c2 
= 0

nc2  100,000 "

was used. This makes k2 = k1 and hence one function evaluation is

saved.

0

0 0 Modified Shanks

3 (-450N + 3) 450N A.48

10 10 10

3 (2250N - 9) 2250N 15

4 8 8 9

(-103500N + 459) 103500N 490 112
81 81 81 81

105 500 448 81
1134 1134 1134 1134

The author's tests showed that this method is faster though

less accurate than the other Shanks forms.

Fehlberg [4] develops methods of order p, coupled with a p+l

order method for automatic step-size control, based on minimizing

the TEB for the p order method as discussed in section A.1-2.
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0

1 11 1 Fehlberg
6 6

4 4 16 A.49
15 75 75

2 5 8 5
3 6 3 2

4 8 144 16----- 4
5 5 25 25

361 18 407 11 55
p=5 320 5 128 80 128

11 11 11 11
0 - 0 -- - 0

640 256 160 256

93 18 803 11 96
p=6 640 5 256 160 256

31 5
p5 384 661125 9 125-- -- -02816 32 768

7 5 5
1480 6-6 66

Sarafyan [28] develops similar type methods with step size con-

trol, based on the embedding principle outlined in section A.1-4.

But Sarafyan prefers to control his p order methods by embedded

p-i, i = 1,2,3---, order methods. This requires no extra function

evaluations, so is faster than Fehlberg's methods. But as Fehlberg

uses a p order method controlled by a p+l order method, his error

estimate will be better than Sarafyan; and hence a larger step size

is possible with Fehlberg's methods, at the cost of extra function

evaluations. However the Sarafyan methods can obviously be used in

the same way as the Fehlberg methods, by using the p order method to

control a p-l order solution.
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The Sarafyan and Fehlberg step size control principles are con-

venient for use and are extendible to any order method.

A Sarafyan fifth order with an embedded fourth order, is eq. A.30

listed in sections A.1-4. Sarafyan [28] gives the deriving equations

of such methods and solves them generally, giving six such embedded

methods.
0

1 1
p=2 12 Sarafyan

1 1 11 
A.50

2 4 4

p=4 1 0 -1 2

6 24
16 24 (11 15 -2 1)10 1000

3 3
p=5 3 3 (18 24 40 7 -25)p=54 256

0 1 p=2

1
(1 0 2 1) p=4

1
- (7 0 108 0 -125 64) p=5

0

p=2 1 Sarafyan

1 Same as
2 eq. A.50 A.51

p=4 1

8 16
- 10 (13 10 24 3)10 1000

7 7
p=510 - (3 4. 0 0 1)

Same as p=2

eq. A.50 p=4

1---4 (69 0 616 -56 875 -1000) p=5
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0
1

p= 2 
-~ Same as Sarafyan
- eq. A.50

1
A.52

p=4  1

2 1
- - (7 10 0 1)

3 3
p=5 2 - (0 -30 0 -12 45)

Same as p=2
-----------------

eq. A.50 p=4
---------------

65 20 1.15 0 - -- -. 27 -- p=575 75 75

0

1
p=2  2 Same as Sarafyan

- - eq. A.50
1

A.53

p=4  1
----------------

2 1
2 1 (7 10 0 1)

2 16
p=5 f 1000 (28 -125 546 54 -378)

Same as p=2
--- - -'

eq. A.50 p=4
-------------------

1
3-6 (14 0 0 35 162 125) p=5



1 -29

0

p-2 I Same as
eq. A.50

1 A.54
2

p-4 1

S--(7 10 0 1)
3 27

2478 .35 .0896 .0504 -.0378

p.5 or

.014(177 250 64 36 -27)

Same as p=2

eq. A.50 p=4

(11 0 140 -567 500 0) p-5
84

p-2 Same as Sarafyan
2 eq. A.50

p.4 1

.1(6 - r) .002((93 + 2,6) 0 4(56 - 11") (3 - 84 )]

p-5 .1(6 + r6) .0004[9(29 - 6r) 0 4(123 - 4746) (363 - 3246) 4(96 + 131,/6))

Same as p"2

eq. A.50 6''

6 4 0 0 0 (16 + 1) (16 6-- =5
36
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All these embedding forms eq. A.50 to eq. A.55 are comparable

to other conventional fifth order methods on accuracy but their

step size control makes them faster.

Sarafyan [44] employs an ingenious step size control with:

0

1/2 1/2 Sarafyan

1/2 1/4 1/4 A.56

1 0 -1 2

3/2 3/8 0 0 9/8

2 -6/7 4/7 24/7 -24/7 16/7

7/45 0 32/45 12/45 32/45 7/45

This form is gotten from the Butcher form, eq. A.38, by multi-

plying all coefficients by a factor of 2. Sarafyan shows that in

going from (Tn, Yn) to (Tn+1  Yn+); using eq. A.38 with h, Yn+l

is available to a fourth order accuracy; at the same time, using

eq. A.50 with 2h, Yn+2 is available to a fifth order accuracy.

Net result - overall V=3 is achieved although the RKE(5,6) of

Butcher is used; and by comparing fourth and fifth order Y n+'s

step size can be controlled.

In the opinion of the author, this Sarafyan method should be

more accurate than eq. A.50 to eq. A.55, because the most accurate

fifth order, eq. A.38, is used here.

A.1-6 RKE(6,7):

The deriving equations are presented in Butcher [3], Fehlberg [4],

and Rosen [5]. The first two also give the general solution of these

equations, in terms of various free parameters.
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In Butcher [3] are listed four RKE(6,7)'s

0

1/3 1/3 Butcher Newton-Cotes

2/3 0 2/3 A.57

1/3 1/12 1/3 -1/12

1/2 -1/16 9/8 -3/16 -3/8

1/2 0 9/8 -3/8 -3/4 1/2

1 9/44 -9/11 63/64 18/11 0 -16/11

11/120 0 27/40 27/40 -4/15 -4/15 11/120

A back step and front step type method (see sections A.1-3 and

A.1-4) is also listed.

0

1 1 C Butcher Newton-Cotes

2/3 4/9 2/9 A.58

1/3 11/36 1/9 -1/12

-1/3 151/36 29/9 -7/4 -6

4/3 -112/9 -116/9 32/3 18 -2

1 -5/4 -29/9 397/276 152/69 -10/69 1/69

23/160 0 29/80 29/80 -1/160 -1/160 23/160

In eq. A. 58 k3 from (Tn, Y n) can be used for the k5 of (Tn+l'

Yn+1); and the k6 of (Tn, Yn) can be used as the k4 of (Tn+1  Yn+l).

So overall V=4 is achieved, hence this method is highly recommended.
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0

1 1 Butcher Newton-Cotes
2 2

2 2 4 9A.59

1 7 2 1
3 36 9 12

5 35 55 35 15
6 144 36 48 8

1 1 11 1 1 1
6 360 36 8 2 10

41 22 43 118 32 80
260 - Y5- -T- - - -S 200 13 156 39 195 39

13 11 11 4 4 13
200 40 40 25 25 200

0

5 5 5 ; Butcher Lobatto
10 10

5 r- A 5 .60
10 10 A.60

5 i r -15 ± 7/5 -1 ± 5 15 : 7/
10 10 4 10

5 . r 5 :5 0 1 15 * 7F
10 60 6 60

5 ; r5 5 ± 0 9 ; 55 1 -5 ± 3/5
10 60 12 6 10

1 1 0 -55 ±25/'5 -25 . 7,/5 5 2/' 5 f"
6 12 12 2

5 5 .1
So o o I1012 12 12

12
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Luther [45] derives an 'optimum' Lobatto form:

0

1 1 Luther Lobatto

S [ 3 1 j A.61

S1 8 2 8 ]

14 321 
[  

3(32s - 7) -8(7 - /21) 48(7 - 2
"
) -3(21 - 2')]

Q14 1 
[- 5

(23
1 

+ 51Sl) -40(7 + 2/2) -3202i7 3(21 + 121A) 392(6 + 21)

1 [15(22 + 7 2) 120 40(7,2, - 5) -63(3/i - 2) -14(49 + 942/f) 70(7 - /i2)]

[  
9 0 64 0 49 49 9]

All these quadrative forms eqs. A.57 to eq. A.61 become seventh

dY
order whendT is independent of Y.

Lawson [46] lists a form with an extended order of stability

(similar analysis to his RKE(4,4) and RKE(5,6), but admits that its

accuracy improvement is marginal compared to other sixth order

formulae, in fact worse for some non-linear problems.

Fehlberg [4] lists a RKE[(6,8);(7,10)], with the usual advantage

of Fehlberg methods (see section A.1-2), namely automatic step size

control and minimum TEB. Sarafyan [47] lists four RK(6,8) with their

embedding advantages (similar to his fifth order methods, see section

A.1-5). Huta's RKE(6,8) is included in this reference. Some, rather

obscure, advantages are claimed for these so called improved sixth

order methods. One definite advantage is that all four are of the

dY
Newton-Cotes family and when dT is independent of Y they become

eighth order in accuracy.
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0

2 2
33 33 Fehlberg

4 4

33 33 A.62

2 1 0 3
11 22 22

1 43 0 165 77
2 64 64 32

2 2383 0 1067 26412 2176
3 486 54 1701 1701

6 10077 5643 116259 6240 1053
7 4802 686 16807 16807 2401

1 733 0 141 335763 216 4617 7203
p-6 176 8 23296 77 2816 9152

15 --
0 35 0 5445 18 1215 1029

352 46592 77 5632 18304 0

1 1833 141 51237 18 729 1029

p-71 -5 0 0 1p7 352 0 8 3584 7 512 1408

77
1440 270 p-6

- - --- 0 0 1771561 32 243 16807
6289920 105 2560 74880

11- o 11 11
864 0 0U- 11 p-7

270 270 p-7

Y6(T + h) Yn + [41(kl+k 8 ) + 216(k3+k) + 27(k +k6) + 272k56n k 840 k 7 4 k6  2 5]

where

k1  hf(Tn,Yn ) Huta

k2 = hf(T n + h, Yn + ) A.63

k3 " hf(T n + h, Yn + (k2 + 3k3))

k4  hf(T +h, Y + (k1 - 3k2 + 4k3))

k5 - hf(Tn + , Y + (-5k1 + 27k 2 - 24k 3 + 6k4))

6 - hf(T + h, Yn + (221k1 - 981k2 + 867k 3 - 102k4 + k5))

5 1
k7  hf(T n +h, Yn + (-183k1 + 678k2 - 472k3 - 66k 4 + 80k 5 

+ 
3k ))

k = hf(T + h, Yn + 2 (716k - 2079k2 + 1002k 3 + 834k4 - 454k5 - 9k + 72k7).8 n n 2 2 4- - 6 ~ 7
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Y6(T + h) = Y + 41(kl+k8) + 216(k3 +k7) + 27(k 4+k6) + 272k 5]

where

k I = hf(TnYn)

1 1
k2 = hf(T n + h, Yn + kl) Sarafyan

k3 = hf(Tn + , Yn 624 (k1 + 3k2)) A.64

k4 = hf(Tn + ~, Yn + (k - 3k 2 
+ 4k3 ))

k5 = hf(Tn + -4  Yn + (kl + 3k4))

k6 = hf(Tn + h, Yn + (-4kl - 21k2 + 46k3 -29k 4 + 10k5))

5 1
k7 = hf(Tn + h, Yn + 2 (-8k1 + 99k2 - 84k3 +44k 4 +9k6))

k8 = hf(T n + h, Yn 
+  (107kl1 - 243k2 + 354k4 - 172k 5 -36k6 

+ 72k 7))

kl = hf(Tn Yn)

k2 = hf(Tn + h, Yn +  l) Sarafyan

k3 = hf(Tn + h, Y+n +  (k1 + 3k2)) A.65

k4 = hf(T +- Y + (k
n + Yn + 6 - 3k2 + 4k3))

k5 = hf(T + - Yn +  (k1 + 3k4)

k6 = hf(T + h, Y + 2 k - 7k 2 + (16k3 + k

5 f

k7 = hf(Tn +h, Y (-68k1 + 99k2 + 96k3 - 180k 4 + 104k5 + 9k6))

k8 f hf(Tn + h, Yn + (287k1 - 243k2 - 540k3 + 894k4 - 352k5 - 36k6
+ 72k7))
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.k1 = hf(Tn Yn)

k2 = hf(Tn + Yn +  kl) Sarafyan

k 3 = hf(Tn + h, Yn + (k1 + 3k 2)) A.66

11
k4 = hf(T + Y + -6 (k - 3k2 

+ 4k3))

k5 = hf(T n + -h, Yn + + 3k4))

2 1
k = hf(T +h, Yn + 1 (17kl - 63k + 51k + k))

6 n 3 n 9 1 2 3 5

k = hf(T + ~ Y  + 4 (-22k + 33k + 30k - 58k + 34k + 3k6))
7 n Yn + 2 1 2 3 4 5 6

k8 = hf(T + h, Y + -2 (281k - 243k - 522k + 876k - 346k8 n n 82 1 2 3 4 5

-36k 6 + 72k7))

Shanks [27] developed an almost (6,6) method on the same

lines as his RKE(5,5), eq. A.47.

1 1
300 300

1 29 30
Shanks

5 5 5

3 323 330 1055 --- - A.67
5 5 5 5

14 510104 521640 12705 1925
5 810 810 810 810

417923 427350 10605 1309 54
1 - - - - - - - - -77 77 77 77 77

198 1225 1540 810 77
3696 3696 3696 3696 3696
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A.1-7 RKE(7,10):

Butcher [3], Fehlberg [4], and Rosen [5] list the deriving

equations.

Sarafyan [48] gives four such formulae, of his usual embedded

types (see section A.1-4), with built in step size control. His

best form on accuracy is:

Y (T +h) = Y +kl

Y2 (Tn+h) = Yn + L(-55k 1+63k 2)

Y7 (Tn+h) 1 72 8 0 [751(kl+k 1 0)+3577(k4+k9)+1323(k5+k )+2989(k6+k7)]

k I = hf(T ,Y n )

k 2 = hf(T n + 6"' Yn + 3kl )  Sarafyan

2 1k3 = hf(T n + 2l Yn + 2(kl+3k2 ) ) A.68

k4 = hf(Tn  + (k1 +3k3))

k5 = hf(Tn + 1h, Yn + f(kl-3k3 +4k 4 ))

k6 = hf(Tn + 1, Yn + (kl+3k 5 ))

4 2
k7 = hf(Tn + h, Yn + -2(-10lk 1 +651k 4-477k 5+449k 6))

k8 = hf(Tn 
+  , Yn 5  (-1881k1-783k 3+10352k 4-3414k 5+5122k 7 

)

6 1
k9 = hf(Tn + h,' Yn + 2 2 2 2 8 5 0 (683663kl+430650k3-2032615k4 +2208930k 5

+385270k6-740735k 7+970137k 8 ) )

k = hf(T + h 1 9 6 0 1100 (- 12175421k -11236050k3+62891430k 4

-43488585k 5-9947140k 6+51099720k 7-30879954k 8+13337100k9 )).
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Y1 (T +h) = Y +k

Y2 (Tn+h) = Yn +-(-kl+3k2)

Y4 (Tn+h) = Y+ -(k+4k 3+k)

Y7(T+h) = Yn+ 0 [41(kl+kl0)+216 (k5+k9)+27(k6+k 8)+272k7]

kI = hf(T ,Y n

k2 = hf(Tn Yn 3 kl) Sarafyan

1

k 3 = hf(T + -=h, Yn + -[kl+3k2] )  A. 69

k = hf(T+h, Yn + -[kl-3k 2 +4k 3])

1 1
k 5 = hf(Tn + h, Yn + -48 [83k+32k3-7k 4 ])

k 6 = hf(Tn +h, Yn + 3[-3kl-4k +k 4 +24k 5])

k7= hf(Tn h, 5Y 88[-290kl-524k3+145k +1908k5+1305k6
7 = 088n  3 4 569 5 +

k8 = hf(Tn +h, Yn 4 3 1 [292kl+108k3+13k 4 318k3+13k-318k5+753k6+106k 7 )

5 1
k = hf(T + 68688[14042k +1012k 3-4477k 4+5724k 5-6903k 6

+6360k +31482k
8

k10 = hf(T + h, Y + - [-2Q49kl-1836k3+839k 5724k5 -4692k 6

+12084k7-9540k8+3816k
9 ]).
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1 (Tn+h) Yn+kl

2Tn
+ h )  

Yn 
+  

(-25kl+27k2)

7 (Tn+h) - Y + 1 41(k 1+k10 )+216(k+k)+27(k6+k8 )+272k 7

-Y(T + I I

2 (T+ ) Y + (-k+3k 2

y4 (T + ) - + -(k+4k 3 +k 4
where

kI . hf(TnYn)

k- hf(T 1

k2 hf(Tn + ih, Yn + jkl) Sarafyan

k3 = hf(T + h Yn + (k+3k2)) A.70

k4  hf(Tn + n +  
(kl-3k2+4k3))

k5 hf(T + h, Yn+kl+3k
L 6 n 414))

and

1 1
6 -hf(Tn + - Yn + (143k I-420k3+411k -128k )5

k hf( +h, Yn + 1-- (- 2 4 9 4
k+6876k 3-5013k 4 +636k+843k6))

2 1

k8 = hf(T n + h, Yn + . (-
24

5
6
kl+7548k3-7977k4+3074k-.189k6+106k))

S hf(Tn+ h n + 763( 44
946k-118428k

3+89043k 4-7844k5-4431k6
-424k 7+3498k8))

k10 = hf(T n + h, Yn + (-67577kl+169308k3-106533k4-3180k +4272k6

+13780k7-954Ok8+3816k9))

or

6 hf( + n + T4(323kl-942k3+915k 4 278k5))

k7 - hf(T n +-h Yn + T (-2070k1+5604k3-3741k4+212k+843k6

k8 = hf(T n +h, Yn + 1  (-
244 9

0kl+72132k3-70125k
4+23108k 5

-201k 6+848k 7))

kg hf(Tn +h Yn + i (
60 3

70k151248k3+96438k +8480k -9747k

+5247k
8))

k10  hf(T n + h. Yn + 1(-125084k 1+297912k 3-150897k442824k 5

+1
4
745k6+26288k7-19080k8+7632kg)).
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SYl(T+h) - Yn+k

Y2(Tn+h) - Yn-8k +9k2

LY 7(T+h) - Yn+ [41(kl+k 10 )+216(k5+k 9 )+27(k6+k 8)+272k71

Y(Tn+ h) - Yn+ (-k1

Yh(T+ h) - Y + ) Y (k 1+4k 3+k 4 )

where

k 1  hf(T ,Yn)

k2 " hf(T + 1 Yn +  
kl )  

Sarafyan

k3 = hf(T n + i2' Yn 
+ (kl+3k 2 )) A.71

k hf(T 1 1 +
k6 :hf(Tn h. Yn + T2(kl-3k2+k3))

1 , hf(T +h Yn + (kl+4k 2+k 4 ))

and

S6 hf(Tn h Yn + (6kl-12k3+221k 4-206k 5))

k 7 hf(T n + , Yn + - (-115k+448k3-336k 4+215k6))

21
k8 hf(Tn + -, Yn + -7(-171k1 +456k 3-8398k 4 +8268k5-49k6+212k ))

kg9  hf(T + + Yn+ f (17367k -52248k 3+36218k4+13144k5-10188k6+5247k8

kl0 hf(T n + h Yn 73 (-1140
7
kl+

3
5012k 3 ll1631k 4 17490k5+3979k+6572k7-4770k+1908k)

or

6 hf(T n +h, Yn (
+ 

2kl-4k3+109k4104k5))

k * hf(T + h, Yn + (-115k+448k3-548k4+212k5+215k6

k8 - hf(T n +-h, Yn + W7(-171k1+456k3-12426k 4+12296k5-49k6+212k ))

k9 hf(T +hY 136 1 749kk9 hf(Tn +h, Yn + 1-6(5789k 1-17416k 3+19846k 4  5 -3392k5-3396k61749k

k10 hf(T n + h, Y + 1(-11407k1+35012k321277k 7844k +3979k6+6572k7-4770k8+1908k)).10 n n 2173 1 3 - 57
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Fehlberg [4] lists a RKE[(7,11);(8,13)]; with the usual ad-

vantages of this form (discussed in section A.1-2): automatic step

size control and a minimized TEB.

0

2 2
27 27 Fehlberg

1 1 1 A.729 36 12

1 1 1
6 24 8

5 5 25 25
112 2 16 16

1 1 1 1
0 02 20 4 5

5 25 125 65 1250 06 108 108 27 54

1 31 61 2 13
6 300 225 9 900

2 53 704 107 67
30 0 6 45 9 90

1 91 23 976 311 19 17 1
3 108 108 135 54 60 6 12

p=7 2383 0 341 4496 301 2133 45 45 18
4100 164 1025 82 4100 82 164 41

3 6 3 3 3 60 0 0 0 0 0
205 41 205 41 41 41

p=8 1 1777 0 341 4496 289 2193 51 33 12
4100 164 1025 82 4100 82 164 41

41 41
840 840 p=7

34 9 9 9 90 0 0 0
105 35 35 280 280

41 41 p=8
840 840

Shanks [27] following the approach discussed in section A.1-5,

lists a RKE(7,7) and a RKE(7,9). On a test system, as expected,

the (7,9) was more accurate, while the (7,7) was faster.
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0

1 1
192 192

1 1
S( -15 16 ) Shanks

S 1 4867 -5072 298) A.732 186

1 (-19995 20896 -1025 155)

5 1
S-22(-469805 490960 -22736 5580 186)

1 ( 914314 -955136 47983 -6510 -558 2511)

1
( 14 0 81 110 0 81 14)

0

2 2
9 9

S ( 1 3) Shanks
3 12

1 10 3 A.74
2 8

1 23 0 21 -8)

8 1 -4136 0 -13584 5264 13104)
9 729

( 105131 0 302016 -107744 -284256 1701

S 1 (-775229 0 -2770950 1735136 2547216 81891 328536)

1 ( 23569 0 -122304 -20384 695520 -99873 -466560 241920)
251888

1 ( 110201 0 0 767936 635040 -59049 -59049 635040 110201)
2140320

A.1-8 RKE(8,11):

Butcher [3], Fehlberg [4] and Rosen [5] list the deriving equa-

tions.

Curtis [49] lists a RKE(8,11), listed here as eq. A.75. In

eq. A.75 the 'b.'s' are the coefficients w.'s used in this study.
1 1

Curtis leaves c2, w9 (b9 ), and w1 0 (b1 0) free; and recommends c2

c3, w9 (b9) = 1/5, and w 1 0 (b10 ) = 13/80.
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Fehlberg [4] lists a RKE[(8,15);(9,17)] with his usual advantage

of automatic step-size control and minimum TEB (see section A.1-2).

Fourty digit arithmetic is used for the coefficients of this method.

This is listed here as eq. A.76, where the 's.'s', B..'s', and 'c. s'

are the same as the coefficients, ci, aij and wi respectively, used

in this study. Also in eq. A.76 i and j take values from 0 to 16 while

the formulation used in this study avoids i,j=0. Hence 10 of eq.

A.76 is the usual a21 , c0 is w1 and so on. Naturally a0 (Cl) = 0 in

eq. A.76. A formula for calculating the truncation error is also

listed.
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oz = 0.4436 8940 3764 9818 3109 5994 0428 1370

a2 = 0.6655 3410 5647 4727 4664 3991 0642 2055
ot, = 0.9983 0115 8471 2091 1996 5986 5963 3083
a4 = 0.3155 0000 0000 0000 0000 0000 0000 0000
a-, = 0.5054 4100 9481 6906 8626 5161 2673 7384
ft = 0.1714 2857 1428 5714 2857 149.8 714 2857
o,7 = 0.8285 7142 8571 4285 7142 8571 4285 7143
aa = 0.6654 3966 1210 1156 25:14 9537 6925 5586
a9 = 0.2487 8317 9680 626. 2069 7222 7456 0771
cao = 0.1090 0000 0000 0000 0000 0000 0000 0000
all = 0.8910 0000 0000 0000 0000 0000 0000 0000
a12 = 0.3995 0000 0000 0000 0000 0000 0000 0000
a13 = 0.6005 0000 0000 0000 0000 0000 0000 0000

C14 
= 1

cas = 0

al6 = 1

Bo1 = 0.4436 8940 3764 9818 3109 5994 0428 1370 Fehlberg
ao = 0.1663 8352 6411 8681 8666 0997 7660 5514
B2 = 0.4991 5057 9235 6015 5998 2993 2981 6541 A.76
BaD = 0.2495 7528 9617 8022 7999 1496 6490 8271
03a = 0.7487 2586 8853 4068 3997 4489 9472 4912
04o = 0.2066 1891 1634 0060 2426 5567 1039 3185
B4 = 0.1770 7880 3779 8634 7040 3809 9728 8319
3o =-0.6819 7715 4138 6949 4669 3770 7681 5048 . 10-1

Bs9 = 0.1092 7823 1526 6640 8227 9038 9092 6157
O5s = 0.4021 5962 6423 6799 5421 9905 6369 0087 . 10-2

Os4 = 0.3921 4118 1690 7898 0444 3923 3017 4325
060 = 0.9889 9281 4091 6466 5304 8447 6543 4355 • 10-1

063 = 0.3513 8370 2279 6396 6951 2044 8735 6703 . 10-a

Es0 = 0.1247 6099 9831 6001 6621 5206 2587 2489
B6s =-0.5574 5546 8349 8979 9643 7429 0146 6348 * 10-

8,~ =-0.3680 6865 2862 4220 3724 1531 0108 0691
0,4 =-0.2227 3897 4694.7600 7645 0240 2094 4166 . 10+1
On = 0.1374 2908 2567 0291 0729 565G 9124 5744 • 10+1
06 = 0.2049 7390 0271 1160 3002 1593 5409 2206 • 10+1
3ao = 0.4546 7962 6413 4715 0077 3519 5060 3349 * 10-'
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0146 =-0.6557 0189 4497 4164 5138 0068 7998 5251
0847 =-0.3908 6144 8804 3986 3435 0255 2024 1310
08e = 0.2679 4646 7128 5002 2936 5844 2327 1209
814 =-0.1038 3022 9913 8249 0865 7698 5850 7427 - 10+1
0

1410 = 0.1667 2327 3242 5867 1664 7273 4616 8501 * 10+1
81411 = 0.4955 1925 8553 1597 7067 7329 6707 1441
81412 = 0.1139 4001 1323 9706 3228 5867 3814 1784 - 10+1
81413 = 0.5133 6696 4246 5861 3688 1990 9719 1534 * 10-'
O1~s = 0.1046 4847 3406 1481 0391 8730 0240 6755 * 10"

81i =-0.6716 3886 8449 9028 2237 7784 4617 8020 * 10"
O1m = 0.8182 8762 1894 2502 1265 3300 6524 8999 * 10-2
O1sio =-0.4264 0342 8644 8334 7277 1421 3808 7561 * 10-2
Oisu = 0.2800 9029 4741 6893 6545 9763 3115 3703 * 10"

1512 =-0.8783 5333 8762 3867 6639 0578 1314 5633 * 10 "

1513 = 0.1025 4505 1108 2555 8084 2177 6966 4009 * 10-1
Oiso =-0.1353 6550 7861 7406 7080 4421 6888 9966 - 10+1
0Bs =-0.1839 6103 1448 4827 0375 0441 9898 8231
0Bs =-0.6557 0189 4497 4164 5138 0068 7998 5251 Fehlberg
lmn =-0.3908 6144 8S04 3986 3435 0255 2024 1310
B u = 0.2746 6285 5812 9992 5758 9622 0773 2989 A.76 contd.
B0w =-0.1046 4851 7535 7191 5887 0351 8857 2676 - 10+1
B161o = 0.1671 4967 6671 2315 5012 0044 8830 6588 * 10+1
8161 = 0.4952 3916 8258 4180 8131 1869 9074 0287
01612 = 0.1148 1836 4662 7330 1905 2257 9595 4930 - 10+1

01613 = 0.4108 2191 3138 3305 5603 9813 2752 7525 * 10-'
B'ss1 = 1

co = 0.3225 6083 5002 1624 9913 6129 0096 0247 * 10-1
ca = 0.2598 3725 2837 1540 3018 8870 2317 1963
c = 0.9284 7805 9965 7702 7788 0637 1430 2190 - 10-
clo = 0.1645 2339 5147 6434 2891 6477 3184 2800
cl = 0.1766 5951 6378 6007 4367 0842 9839 7547
cvz = 0.2392 0102 3203 5275 9374 1089 3332 0941
cis = 0.3948 4274 6042 0285 3746 7521 1882 9325 o 10 2

1,4 = 0.3072 6495 4758 6064 0406 3683 0552 2124 . 10-"

TE = c4 (fo + fr -fm - f ) h
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Bas = 0.3254 2131 7015 8914 7114 6774 6964 8853
Oeo = 0.2847 6660 1385 2790 8888 1824 2057 3687
BI = 0.9783 7801 6759 7915 2435 8683 9727 1099 * 10 -

8Oo = 0.6084 2071 0626 2205 7051 0941 4520 5182 * 10 - '
09s =-0.2118 4565 7440 3700 7526 3252 7525 1206 * 10 - 1

0% = 0.1959 6557 2661 7083 1957 4644 9066 2983
s, =-0.4274 2640 3648 1760 3675 1448 3534 2899 * 10-2

O8e = 0.1743 4365 7368 1491 1955 3234 5255 8189 * 10- '
Amo = 0.5405 9783 2959 3191 7355 7857 2411 1182 * 10 - 1

Blos = 0.1102 9325 5978 2892 6539 2831 2764 8228
Br1 =-0.1256 5008 5200 7255 6414 1477 6378 2250 * 10 - 2

lc0a = 0.3679 0043 4775 8146 0136 3840 4336 6339 * 10- 2

OIa =-0.5778 0542 7703 7207 3040 8406 2837 1866 * 10-'
llo = 0.1273 2477 0686 6711 4646 6451 8179 9160

117 = 0.1144 8d5 00j3 9310 532.3 6588 7572 1817
8Ole = 0.2877 3020 7036 9799 2776 2022 0184 9198
OBiw = 0.5094 5379 4596 1136 3153 7358 8507 9465
Ol1o=-0. 1479 9682 2443 7257 5903 2421 4444 9640 Fehlberg
Blo =-0.3652 6793 8766 1674 0535 8485 4439 4333 * 10-

Olm = 0.8162 9896 0123 1891 9777 8194 2124 7030 . 10 -  A.76 contd.
B01 =-0.3860 7735 6356 9350 6490 5176 9,434 3215
O1a = 0.3086 2242 9246 0510 6450 4741 6602 5206 * 10- '
012 =-0.5807 7254 5283 2063 2815 8293 7473 3518 . 10-1

012 = 0.3359 8659 3285 8497 1493 1434 5136 2322
01aw = 0.4106 6880 4019 4995 8613 5496 2278 6417

x12=-0.1184 0245 9723 5598 5520 6331 5615 4536 . 10-1
Sm =-0.1237 5357 9212 4514 3254 9790 9613 5669 . 10+1
Om =-0.2443 0768 5513 5478 5358 7348 6136 6763 . 10+
23 = 0.5477 9568 9327 7865 6050 4365 2899 1173

Ogw =-0.4441 3863 5334 1324 6374 9398 9656 9346 * 10 + 1

Oun = 0.1001 3104 8137 1326 6094 7926 1785 1022 * 10+-
OL' =-0.1499 5773 1020 5175 8447 1709 8507 3142 - 10 +"
t31= 0.5894 6948 5232 1701 3620 8245 3965 1427 . 10 + 1

On, = 0.1738 0377 5034 2898 4877 6168 5744 0542 * 10 + '
,sAs.= 0.2751 2330 6931 6673 0263 7586 2286, 0276 * 10+2

04o =-0.3526 0859 3883 3452 2700 5029 5887 5588
x4s =-0. 1839 6103 1448 4827 0375 0441 9898 8231
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Shanks [27] has listed two 'almost' eighth order formulae (see

section A.1-5), one a RKE(8,10), and the other a RKE(8,12). As

expected the (8,10) is faster, while the (8,12) is more accurate (not

much more accurate, as his own tests prove).

0

4 4

2 1
2q (1 3) Shanks9 18

1 1 ( 1 0 3) A.77

1 1
- g (1 0 0 3)

-~ (13 0 -27 42 8 )

1 1
4--2 (389 0 -54 966 -824 243 )

1 (-231 0 81 -1164 656 -122 800

5 1
S (-127 0 18 -678 456 -9 576 4)

6

1 (1481 0 -81 7104 -3376 72 -5040 -60 720)

j-g ( 41 0 0 27 272 27 216 0 216 41)

0

11
9 9

1 1(  
1 3) Shanks

6 - ( 1 0 3) A.78

-( 29 0 33 -12)

1 
(  

33 0 0 4 125 )

1 -21 0 0 76 125 -162 )

2 T
2 

(  
-30 0 0 -32 125 0 99 )

(1175 0 0 -3456 -6250 8424 242 -27)
3 324

5 1( 293 0 0 -852 -1375 1836 -118 162 324)
6 324

S 1-- (1303 0 0 -4260 -6875 9990 1030 0 0 162)
6 1620

1 4- (-8595 0 0 30720 48750 -66096 378 -729 -1944 -1296 3240)

( 41 0 0 0 0 216 272 27 27 36 180 41)
840
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Increasing use of higher precision arithmetic is required, to

realize the advantages of this order over the seventh order (slim

advantage in accuracy)--paying the price of increased computational

time.

A.1-9 RKE's of Ninth and Higher Order

The deriving equations for ninth and higher orders are listed,

but not solved in Rosen [5].

Shanks is supposed to have developed (not yet published) ninth

and tenth order RKE's.

There is no real reason for pushing on for orders beyond the

eighth (except for special problems). According to Fehlberg [4]

accuracy hardly improves after the seventh order methods.

Sarafyan is working on a computer formulation and solution,

of the deriving equations leading to high order methods (see

Sarafyan and Brown [7]); however the results are yet to be published.

A.2 Semi-Implicit Runge-Kutta Methods - RKSI(p,V):

It is easier to use the autonomous form of an ordinary differential

equation system when dealing with these types of methods.

dY
- = F(T,Y) A.79

The explicit dependence of T in F(T,Y) can be removed by making

T the (n+l)th component of the n component vector Y. This makes the

system n+l dimensional rather than n dimensional.

let Y+1 = T
n+l
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dY
dYn+l
dT

dY
. = F(Y) A.80dT

where:

Y F1 (Y 'Y"'Y nYn+Y )

dY
- = Y and F(Y) = Fi(Y 1"Yi. " Y Y+

Y .

Y Fn(YI **Y.*YY )

n+ 1

The initial conditions would also be accordingly altered,

i.e., Yn+1 (T0 ) = T0 . There is no need however to solve the n+l

component equation of eq. A.80 as its solution is always Yn+ = T.

When a Runge-Kutta method is used on this autonomous form;

the increments coefficients of the abcissa, i.e., the c's, become

a's, i.e., the increment coefficients of the vector component Yn+l"

In Chapter 2, section 2.2 the method of solving for each k.1

of the semi-implicit form was discussed; this involved a Jacobian

inversion. Restating eq. 2.33 in matrix form to apply to a system

of equations, with the a.. 's involved in the Jacobian written as
13

a..'a.

i-i i-i
k. = [I- haii F (Yn +  aj k.] -1  * hF(Y--n +  a..j k.)

j=l j=l

A.81
i = 1,2,---V

The RKSI type method used to solve eq. A.80 is:
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V
Y +l= Y + wk

i=1 A.82

k = hF(Y + a kj
j=1

To solve for each k. the formulation of eq. A.81 is used.
-1

The coefficient matrix is of the form:

all

a2 1  a2 2  a2 1

* *

a a ****a, a a ****a
.il i2 ii il 2 ii-

* *

avl a *******...........* avv av a .... avv-
v v2 vv vl v2"" vy-1

w w2 ..... w v*** w

Allen [50], Rosenbrock [51] and Haines [52] list the deriving

equations. Allen [50] gives a thorough discussion of the deriving

equations and the stability advantages of RKSI's over RKE's; and also

gives coefficients of the truncation errors. In general RKSI's re-

quire less stages, V per step as compared to RKE's, to achieve a

p order method. The price paid by RKSI's, for achieving extended

stability as compared to RKE;s, is the additional computational ef-

fort required to compute Jacobians and their inverses; but this price

is not As steep as the one paid by RKI's, where iteration for k.'s
1

is required.

Lapadis and Seinfeld [6] recommend the use of RKSI only for

those cases where stability is critical, for example, with still

systems; because in general RKSI's are not significantly more accurate
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than comparable order RKE's; and RKSI's usually require more compu-

tational time as compared to RKE's.

The following sections are titled RKSI(p) instead of RKSI(p,V).

A.2-1 RKSI(1):

Allen [50] states that no such case of interest exists.

A.2-2 RKSI(2):

Allen (50] and Rosenbrock [51] list the deriving equations and

solve them. Allen [50] gives a V=2 method while Rosenbrock gives a

V=2 process.

Allen
1/2 0

A.83
1

1 

---

0

2
,r 1Rosenbrock

(J£ - 1) 1 2 -
2 A.84

0 1

Allen [50] however admits that his method, eq. A.83 does not

possess significant stability advantages over a second order RKE.

A.2-3 RKSI(3):

The deriving equations are listed and solved in Allen [50],

Rosenbrock [51] and Haines [52].

Allen [50] lists three methods with V=2:

0
Allen

0 1/3 1/3
A.85

-1/2 3/2
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.211325
Allen

1.154701 .211325 0
A.86

.75 .25

.788675
Allen

-1.154701 .788675 0
A.87

.75 .25

Eq. A.87 is the best such method as judged by various tests,

conducted in Allen [50].

Rosenbrock [51] lists a method with V=2:

1.40824829
Rosenbrock

.17378667 .59175171 .17378667
A.88

-.41315432 1.41315432

Calahan [53] also lists a V=2 method, which is the same as Allen's

eq. A.87.

Haines [52] derives a V=4 method, the extra stages per step

being used to give a truncation error estimate and hence allow step

size control. This method consists of two equations, each with V=4

stages. These two equations are compared to give a truncation error

estimate. Both these equations have mostly common coefficients. This

method is listed in two parts because each part can be used inde-

pendently to give a third order method, or in combination to give

an error estimate.
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1 1 1 Haines

1/2 1/2 1 1/2 1/2 A.89

2/99 95/99 2/99 2/3 0 0 0

19/9 -43/18 28/9 -11/6

1

1 1 1 Haines

1/2 1/2 1 1/2 1/2 A.90

21/44 19/44 1/11 1/2 0' 0 0

10/3 -1 7/3 -11/3

Errorn = (29/9)[(Y n with eq. A.89) - (Yn with eq. A.90)]

Haines [52] also compares his method, which combines eqs. A.89

and A.90 to give step size control, with a RKE(4,4) which uses a simi-

lar step size control. His results point out that his method is

superior on basis of computing time and stability.

A.2-4 RKSI(4):

Allen [50] lists thirth fourth order methods with V=3. Three

such methods are presented here, these three were judged in Allen [50],

and found to be superior to the rest of his methods on some points.

0

- .31447015 .16666667, .4444779 Allen (minimum
computational

11.8533114 -9.9088335 .16666667 .4444779 0 effort)

3.51324302 -2.57014293 .05689991 A.91
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.28915127

.57118895 .28915127 0 Allen (largest
region of stability)

.53873135 -.024693209 .33215386 0 0
A.92

.72862466 4.21831023 -3.94693489

.86234511

-1.28325229 1.23119918 0 Allen (best for
numerical stability)

- .80332019 - .091154713 1.23119818 0 0
A.93

- .32266573 - .85621119 2.17887692

Butcher [2] has listed a RKSI(4,3); his method does not apply

to the autonomous form of the differential equations, but to the usual

form used throughout this study. (The method could easily be con-

verted to apply to an autonomous form by simply removing the c.'s.)
1

0 0

1/2 1/4 1/4 Butcher

1 0 1 0 A.94

1/6 2/3 1/6

A.3 Implicit Runge-Kutta Methods - RKI(p,V):

Restating the equations for a RKI(p,V):

V

i=l1 A.95

V
k. = hf(T + cih, Y + j aijkj)
1 n 1 n j=1

The coefficient matrix for these types of methods is full; and

hence each k. has to be solved for iteratively at each integration
1

step.
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The use of these RKI's is recommended for two situatipns: one

where stability is critical and a self-starting process is desired;

two when the differential equation system is such that the cost of

computing f(T,Y) for a given value of T is high compared to the cost

of repeating this computation with Y changed but T unchanged. In

the second situation the iterative nature of an RKI would not be an

objection;especially if the differential equation system is linear,

then the iterations can be replaced by standard linear algebra

techniques.

Advantages: Stability characteristics better than comparable

order RKSI's or RKE's. Always stable for any h.

Higher p for a particular V as compared to RKSI's

and RKE's. The deriving equations are easier to

formulate than those of RKSI's and RKE's.

Disadvantages: For even moderately complex differential equa-

tion systems the iterative solution of ki's re-

quires more computational effort than comparable

order semi-implicit or explicit methods.

The coefficient matrix will be presented in the following form:

.1 .11 .13 .Iv

c. a *" ja..****a..1 . 13 .v

c a ""a.*""a
v vl vj vv

w .... w. .... w1 3 v

Most currently available implicit processes were derived by

Butcher. The theory behind implicit methods, attainable order, etc.,
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is dealt in Butcher [1] and Verner [54]. Deriving equations and

implicit methods are listed in Butcher [2], Butcher [3] and Butcher

[55]. Lapidus and Seinfeld [6] also list some of these Butcher

methods.

Implicit Runge-Kutta methods are based on quadrative formulae

(The Taylor Series analysis can also be used to derive implicit

methods but the quadrative approach is simpler). Basically Implicit

Runge-Kutta's can be divided into three classes of methods: Gauss-

Legendre quadrative forms, Radau quadrative forms, and Lobatto

quadrative forms.

Quadrative Form Abcissa points (ci's) V p
specified

Gauss-Legendre All c.'s found as roots V 2V
of a ILegendre poly-
nomial, no c. specified

i

RadauI  c. = 0 specified V (2V-1)

Radaul cV= 1 specified V (2V-1)

Lobatto c1 = 0 and cV = 1 V (2V-2)
specified

when cl = 0 all = al2 = al3 = *...... = alV = 0

when cV = 1 alV = a2V = a3V = .= aVV 0

Hence the Lobatto forms have the first row and last column of

the coefficient matrix as zeros. Thus as c1 = 0 and cV = 1 were

specified two ki's, k1 and kV are available explicitly and so can

be solved for by iteration. The RadauI and RadauII forms have only

one k. available explicitly as only one c. is specified. While the
Savalable explctly as no c

Gauss-Legendre forms have no k. available explicitly as no c. is
1 1
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specified. Because of the number of abcissa points specified, the

Gauss-Legendre forms have the highest p for a given V, while Radau

forms are next and Lobatto forms last.

Butcher [2] also suggests a convergent iterative procedure

applicable for calculating the implicit k.'s of any RKI.

If n is the iteration count for a particular k. the convergent

iterative procedure is:

i-1 V

kn hj(T + c h, Y +  a..kn + a..kn l))
j=l =i

Butcher proves that this procedure is convergent.

A.3-1 RKI(p,V)'s of the Gauss-Legendre Quadrative forms:

These kinds of RKI's are listed in Butcher [2] from p = 2 to

p = 10 (p = 2V), an error analysis is also included.

1 1
2 2 RKI(2,1)

A.96

1 - -- RKI(4,2)
2 6 - 4 6

1 + 1 I3- 1 A.97

2 6 4 6 4

1 1
2 2
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S2 035 5
i- i- 3 15 36 30 RKI(6,3)

1 % 2 5 7 A.98

I1

2 - , U -U+ - - usu I(8,4)

1 . 0 5 + A.99

+,s 4 +i u us -us us- E1-s

1 , S , A. 100
j u+us u s us+

1 1 V

us' (us .. ( _ , + ., us_' - u

. ., + sj
--- u + us+ +t- - u- -u

u ua + us u I + usau - s us
2s 2s 3

2-225S'f Of 2 s

u su-s+ + O+W o

us us ( ) us' us ( 52- )

405-ea 3
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A.3-2 RKI(pV)'s of the Radau quadrative forms:

These types of RKI's are listed in Butcher [55], from p=l to

p=5 (p = 2V - 1). Butcher [55] also describes an ingenious error

analysis applicable to the Radau and Lobatto (see section A.3-3)

forms of RKI's.

0 0 RKI(1,1)

1 A. 101

0 0 0 RKI(3,2)

2 1 1 A.102
333

1 3

O 0 0 0

6) - 9 + \/fi 24 + Wi; 168 - 73 N1' RKI(5,3)
10 12 00

o + vi6 9 6- i lIt8 + 73 Vi 24 V- /6 A.103

10 ) 1i(00 120

I ~1 + 16 - vii

1 31 36

1 3 0 RKI(3,2)

1 1 0 A.104

3 1
4 4

4 - V/i 2- - /i 24 - 1 1i 21 - v - .LYI 0 RKI(5,3)
10 120 120

4 + v/i .. + 11 ~1 2-1 + 0/i o A.105
10 120 120

1---i . .. - - 0
12

Il - N/1i Ili + NA~ I
:6i 36 T
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A.3-3 RKI(p,V)'s of the Lobatto quadrative forms:

Butcher [55] lists these types of RKI's from p-2 to p=12

(p = 2V - 2). An ingenious error analysis applicable to these forms

is also described.

0 0 0 RKI(2,2)

1 1 0 A.106

1 1
2 2

0 0 0 0 RKI(4,3)

1 1 1
2 0 A.107

1 0 1 0

1 2 1
636

2 I 1 II II (2

,- 5v 4 0, I -15 -t 7 ' RKI(6,4)I4I 0 i2 li1 1

St 8 - 15 7 / I A.108
lo lW) lu Ei

+ 1 5- /1j 5- \/5

1 l1

7 - V 1 13 - 3%/ 1. - :V'21
14 14 1 -. 126 E- RKI(8,5)

1 .1 1 2/i 11 M - 21 'A1
- El - .--- -- A.109

7+ %/Vi 1 14 + :i1 13 + :v"j E...... i--- 1- - F2-6- - i "

1 7 2 7
isIi ii IE

-18 45 Imi 21
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o 0 0 0 0 00
S 1 I(10, 6)

I-1 , 1 11-. rl-+ +4- l'sc' -- 4++ ,-ur +

j + '-' "-u-a'-ug 0
A.110

1-+' 1 1 1

+ a+w-,'+a ,+'+ +,, ,a - 4 a-a-a'+' 01 . -I -+ w-+e +.- *w ff' _4+w+ 0

.2 i+,W ,++, +c,'--+< ,'-,O+,+** ,_ 0

11Uwa+"a 201,'+.,, 2 ,a'- ' 2U--- 0

1 2i-n SA S ' 2,' 2"a -

7-5/7 7 , + / 2 + 5VI 2 -5 vr
"I M " ) 2) 120

S14 + 714 - + 17/f 22 - 17/i,
3714 37) • 340 360

() i0 90

0 0 0 0 0 0 0 0

--- h ,-"+" "-" a-"a-" "-j- 1 RKI(12,7)

2 --4 "- 84

+", W + +, + w , '+ II 0

2 8-84

1 12 8 i

a, o " a, " 0

4 81 25

124 - 7i 124+7v'5 1 +2V1 / _2V1_L" 14 " 1400 33 'Va 33

413 , 413 54 + 5V 5 , 4 - 5B/" OR + 27ViS
303' ' ,3 "a 2178 2178 ' '- 320--

9, -27'T 658 + 1. M) , . 58 )- 100 '' 3276 - 1003(
1320 4520 14620 27225, 327o+ lO0v13 36 - 4 i ,., +4 ,, 8 - O

"8+ tts , 80I-73vf5 , 86 1+73v5 Ill - 17Vii/ "a, u+_, .. - , a.. ..
(10 eco) 0000 (44ows - W - a - - .

O) 30 ' 300
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A.4 Multistep Runge-Kutta Methods - RKMS(p,V):

One way of reducing the stages V of a p order Runge-Kutta is to

use an implicit Runge-Kutta--the price paid would be the iterations

required. Another way of reducing V for a given p order Runge-Kutta

is to utilize the solutions of one or more previously evaluated steps.

This result is a Multistep Runge-Kutta. The price paid here is that

the inherent self-starting, easily institutable step size change,

accuracy, and stability advantages of the single step Runge-Kutta's are

lost. Another disadvantage (trivial) of a multistep method, compared

to a single step method, is that extra storage is required to save

the solutions of previously evaluated steps. The typical complex

error analysis of single step Runge-Kutta's occurs in RKMS's too.

On the whole standard multistep predictor-corrector methods

perform better than RKMS's; so there does not seem much point in

using a RKMS instead of a RKE, if a multistep method is desired,

a standard predictor7 corrector is recommended.

Based on the usual formulation of a Runge-Kutta method, applicable

to a first order ODE, a RKMS(p,V) is defined by:

S V
y y n-s+l n-s+l

n+l n s i1s=l i=l

A.112

kns+l hj(T + cn - s+l h, Y + an-s+ kns+l
i n-s+l i n-s+l j=l i ij

S S n+ln

M 1S V

n - 1,2,3,-**
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The superscripts in eq. A.112 are used to identify wi , ki, c.

and a at a particular time step. For example, Sn=1 makes eq. A.112

a single step Runge-Kutta; S =2 makes eq. A.112 a two step Runge-Kutta,

and the k.'s of the (n-l)th time step are used together with the k 's

of the nth time step, to arrive at the solution Yn+l" If S =n+l; then

the wolutions of all previously evaluated steps, including the initial

conditions; are used to calculate Yn+1. Henceforth RKMS(p,V,Sn) will

be used to designate these methods. The value of Sn identifies the

number of steps used in the RKMS. Bryne and Lambert 59 show that

there is not much point in going beyond a two step (Sn=2) Runge-Kutta,

because both accuracy and stability of these RKMS's deteriorate as

compared to single step Runge-Kutta's.

The rest of this section will discuss S =2, or two step RKMS's,

eq. A.112 is reformulated in a more convenient form for S =2.n

V V
Yn+l = Yn + u igi + k.

i=1 i=l
Mi

gi = hf(T n- + bih, Yn-l + di gi) A.113
j=1

Mi
k.i = hf(Tn + ciJ , Y + aijkj)

j=1

M V

Usually Mi = i-1 is used to give an explicit formulation.

Rosen [62] gives the deriving equations for RIMS(4,3,2) and RKMS

(5,5,2) using the convenient quadrative approach (convenient as com-

pared to the Taylor Series approach). Butcher [56,57] also gives

the deriving equation, but the methods of these papers are really

hybrid methods, not RKMS's, and so come under section A.5.
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Bryne and Lambert [59] present the deriving equations for two

RKM's: a RKMS(3,2,2) and a RKMS(4,3,2). The general solution, error

analysis and proof of convergence is also presented. Bryne [58] gives

the parameters which make the above two methods optimum (minimum TEB

based on the Ralston [8] criteria, see sections A.1-3 and A.1-4).

Lapidus and Seinfeld [6] also list these two methods.

RKMS(3,2,2):

n-1 n

b =0 cl=0

b2=c2  c2=c 2
d21=c2 a1=c 2  A.114

(18c2-5)
ul=l-w w
1 1 1 12c 2

5
u2=-w2  w 12c2 12c2

4
c2 free, c2  gives an optimum method.

RKMS(4,3,2):

n-1 n

bl=0 c =0

b2=c 2  c2=c 2
b3=c 3  c3=c 3

d21=c2 a21=c2'

d31=a31 a3 1=c3-a3 2
[2c3 (c3-c2)]

2d =a a = [A.115
32 a32 32 [c 2 (4-5c2)]

[4+18c2c3-5(c2+c 3)]

1 1 1 12c 2c3

[4-5c3]

u2 2  [12c 2 (c2-c3)]
[5c 2-4]

u3=-w1  w3= [12c 3 (c2-c3)]

c2 and c3 are free, c2=.541 and c3=.722779927 give an optimum method.
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Lapidus and Seinfeld 6 also list the above two methods.

These two methods, eq. A.114 and A.115, are not as accurate as

comparable order RKE's (though they are faster).

Chai 60 develops an optimum RKMS(4,3,2) using an ingenious

derivation. Chai notes that if an RKE(4,4) has w2=0 then the k2 can

be reformulated in a multistep form without changing the ci's, aij s,

and wi's of the RKE(4,4). The method is hence defined by the usual

RKE(4,4) formulation but with k2 given differently.

k 2 = hf(Tn,Y n ) + h2c2f' (T,Yn)

A.116
h 3  h4  ,,,,

+ e j"'l (T YYn) + f""(T Y) + ...
2! 1 n n 3! 2 n9 n

where

c2 # 0

el and e2 are constants.

By using a finite difference approximation for f'(Tn, Yn) in

eq. A.116 Chai arrives at:

k2 = qlk1 + 2Wn-l + q 3 g1  A.117

where:

VY = Y - Yn-l n n-i

V
.*. VYn 1 = wig i  A.118

i=l

the gi's being the ki's of the previous step.

Thus V=3 is achieved because no function evaluation is necessary

for k2.
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By comparing a Taylor series expansion of eq. A.117, up to second

order terms, with the first two terms of eq. A.116, gives a set of

conditions for the q's.

ql+ 2 + q3 = 1 A.119

q2
2 + q3 -c2

Thus one q is arbitrary.

An optimum RKMS(4,3,2) is hence formulated by Chai (minimum TEB)

this uses the same ci's, aij's and wi's as the RKE(4,4) from which it

is derived, hence no separate starting method is necessary.

RKMS(4,3,2):

cI =0

26 42 16
c2 = c2  q = 1 +-c q =---c 2  q3  c

2 2 1 2 2 5 2 3 5 2

c3 = 1/2

c4 = 1

a21 = c2  A.120

1 1 1
31 2 8c2  32 '8c2

1 1
41 2c2  1 a42 - 2  43 2

w1 = 1/6 w2 - 0 w3  w4 = 1/6

c2 = 1/2 or 1/4 is recommended.

Chai's tests show that this RKMS is superior on accuracy and time

to the RKE with which it shares its coefficients. An error expression

for corre-ting the solution, to yield a fifth order accuracy is also

given. De to its simplicity of application and other advantages,

this method is highly recommended.

Gruttke [61] gives the deriving equations for a RKMS(5,4,2).

These equations are solved to yield various methods which are
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extensively tested. An optimum based on the Ralston [8] criteria was

determined.

RKMS(5,4,2):

n-1 n

bl = 0 c1 = 0

b2 = c2  c 2 = c2

b3 = c3  c3 = c3
62

b = 4  4  85

d21 = c2 a21 = c2

d31 = a31  a3 1 = c3 - a32
31 - 40c

d = a a 2431- A.12132 = 32 32 240 w3c2 ( 3 - c4)

d41 = a41  a41 = c4 - 42 - a43

1 . (c3 - c4)(31 - 60c3>
42 = a42  a4 2  [120 w4 c2 (c4 - c3)] 3(c3 - c2)

(31 - 40c4)
+ 2

31 - 60c2

43 = 4 3  43 360 w4 c 3 (c 3 - c2 )

3
U1 = - w = (w 2 + w3 + w4 )

31 + 50c3c4 - 40(c 3 + c4)
u 2 = 2  w 2  120c2 (c2 - c 3 )(c 2 - c 4 )

31 + 50c 2c4 - 40(c 2 + c 4 )
u 3 = -w 3  w 3 +

3 = 3  3  120c3(c 3 - c2 )(c3 - c4 )

31 + 50c 2c3 - 40(c 2 + c 3 )
u4 = w4  w4  120c4 (c4 - c 2 )(c 4 - c3)

c 2 and c3 free, c2 = .25 and c3 = .869 give an optimum method.

Again, eq. A.117 would be faster than comparable fifth order RKE's

but not quite as accurate.
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There would be very little advantage in deriving an implicit or

semi-implicit RKMS form (Mi = V or Mi 
= i in eqs. A.112 or A.113),

because of the additional complexities involved.

A.5 Special Types or Hybrid Runge-Kutta Methods

Two most widely used methods of numerically solving ODE's are

the Runge-Kutta methods and the predictor-corrector methods.

For complex systems of ODE's numerical solutions, using the usual

Runge-Kutta's discussed so far, have one big disadvantage--function

evaluations take up the major portion of the computational time in-

volved. Multi-step predictor-corrector methods require considerably

less function evaluations per step. So obviously reducing the number

of function evaluations (V) of a Runge-Kutta, while retaining some

or all the good points of a Runge-Kutta, would yield good methods.

Some compromise between Runge-Kutta's and predictor-correctors is

indicated.

Single step Runge-Kutta's have certain definite advantages and

disadvantages, and so do the predictor-corrector multi-step method.

Characteristics of Comparable Order Methods

Single Step Runge-Kutta Multi-step predictor-correctors

Advantages: Disadvantages:

1) Self-starting 1) Not self-starting

2) Comparatively good stability 2) Comparatively bad stability

characteristics because single characteristics because multi-

step (so large h possible) step (h comparatively small)

3) Step size and order easily change- 3) Step size and order change not

able at each step. easily instituted at each step.
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Disadvantages: Advantages:

1) Computationally fast as
1) May require greater computa-

tional time as comparatively comparatively small number

large number of function evalua- of function evaluations re-

tions required quired (provided not too

many iterations done).

2) No easily computable and ac- 2) Fairly easily computable

curate error estimate available and accurate error estimate

usually available.

3) High order methods involve ex- 3) High order methods easily

tremely complicated deriving deroved/

equations.

Hybrid Runge-Kutta's have been developed to combine the advantages

of the Runge-Kutta and predictor-corrector methods, while trying to

avoid their disadvantages.

Rosser 63 developed a class of ingenious hybrid Runge-Kutta's

with great potential. These methods favorably combine the advantageous

features of Runge-Kutta's and predictor-correctors. They may be de-

scribed as implicit, multi-step, predictor-corrector Runge-Kutta's.

These methods are "Block" methods and proceed by blocks of N

steps. Each block is completely independent of other blocks. The

solutions from previously evaluated steps are only required from,

and used within, a particular block. A large degree of flexibility

is built into these block methods giving them three concrete advantages:

1) Step size is constant within a block but can easily be changed from

block to block

2) Order of accuracy can be varied from block to block by changing
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N, the number of steps constituting a particular block; and by

changing the number of iterations used in each block.

3) Accurate estimates of errors incurred within a block are available

and so give good pointers for the best values of h and N for the

next block.

These "Block" methods result in a considerable savings of function

evaluations and are hence highly recommended. The Rosser "Block"

Runge-Kutta's can be defined using the following formulation:

For a block of N steps:

xl. x x x =x -x =h>0X1 x 0 x2 - X1 n X n-l h

The subscript 0 denotes the starting or initial step, hence

x0o YO are known (from initial values or the results of the

previous block).

YO Starting values
for a block A.122

YO' = j (x ,yo)

r = YO + mhf(x0,y0) A.123

yr = f(x, m)  A.124
m mm

r Z 0 m = 1,2,3, ... N

The superscript r is the iterate count.

r+l h r a'r 'r
Y1 = Y0 + h[wlY0 + all r + * + almYr +"' + an n

'r+l ' 'r 'r 'r
Ym Y + h[wY + amlY +  " + amm + r + a jmnn ]  A.125

r+1 Y + h[wn + an r ... + anm + nn + annYn r

r 0 m = 1,2,3, N
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W, w2 *** Wn and all, a m ", a are constants defining a

particular block method.

The working of the block method is easily understood. Consider

1
the r=0 case, i.e., the first iteration: y is calculated from

eq. A.125; this requires N function evaluations--ylo, Y2 , n 
in

which are calculated from eqs. A.122 and A.124 (y0 is assumed known

from a previous block and remains the same for any iteration; though

yo must be calculated for the first block from eq. A.122 and 
hence

1
the first block needs N+l function evaluations). Similarly y2,

y y. are calculated from eq. A.125, these use the same y '
3 n 1

Y2 ' n used by Y 1 . Thus a complete sweep for a block (one

complete iteration of eq. A.125) requires N function evaluations. For

2
r=l, i.e., the second iteration: yl is calculated from eq. A.125

1 1 1
in the same way as for the r=0 case: the values yl,' 2' '.. yn are

'1 '1 . 1
substituted in eq. A.124 to yield yl , y2 . Yn , which are then

2 2 2
used in eq. A.125. y2, y3 "'" yn are similarly calculated.

Up to a point increasing r, the number of iterations, increases

the order of accuracy of the solutions yl, y2 ... yn. For example,

for a N=4 method (Milne method) with 0 : r L 4 each iteration gives

yr to an order of accuracy of 4+2. For r > 4 no improvement in or-

der of accuracy is gotten. If r=3 is used a fifth order method re-

sults and uses a total of 16 (4N) function evaluation for a block of

four steps (N=4). Thus a fifth order Runge-Kutta is gotten which

uses four function evaluations per step. If r=4 is used a sixth

order Runge-Kutta results which uses a total of twenty (5N) function

evaluations for a block of four steps (N+4). Thus a sixth order

Runge-Kutta is gotten which uses five function evaluations per step.



The above discussion illustrates the flexibility of these "Block"

Runge-Kutta's--high order of accuracy for the number of function evalua-

tions, and variable order of accuracy possible.

Rosser 63 has derived several such methods where the number of

function evaluations are further reduced by curtailing some of the

early steps, and accelerating the convergence of the later steps. In

these methods order of accuracy is changeable, and is changed by

varying N or r. An error estimate is also given, and a procedure for

changing N and h from block to block outliaed. In general if N = 2r

or 2r + 1 a Runge-Kutta of order 2r + 1 results.

The Block approach improves conventional Runge-Kutta's and

makes them comparable to predictor-correctors on speed. But the

"Block" approach is applicable to predictor-correctors also and will

improve them too.

Rosser has derived methods up to N I 8, i.e., up to a tenth order

Runge-Kutta. In the following formulae y is used in the error
s

estimates and is d- evaluated in [xO, XN].
dx
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One-point formulas:

- yo =hyo -+ .+ . A.126

Two-point formulas:

1, - yo = (yo' + yl') - 12 '
, ha > - *- -.

U - Yo = 2hyI + h3.

Three-point formulas:

U/ - _ = (o + Sy' - +Y') + A. 128

Y - Yo = 3 (Yo + 4y1 + y') -

3h 3h'y( )

Y3 - YO -T (yo + 3y) + s -

Four-point formulas:

Y - yo= h (9ydo + 19U1' - 5y2' + y3) - 1 A.129
24 720

y: - U = h (o' + 4y,' + 1) - '3 90

Y3 - YO = 3 (yo + 3y1 ' + 3y, + yl,) - 3h ,'y

U, - o = (U - Y + 2y3') + 4h'y
3 45

S- Y3 = (10yo' - 81y, + 136y3' + 31yG') 3- 160'
32 160

Five-point formulas:

Y - Yo = h (251yo' + 646y' - 264y2' + 106ys - 19y') + 3h'16
A.130

/2 - Uo = (29yUo + 124y' + 24y2' + 4y3' - y') + " '
90 90

U3 -- Y = 3h (9o' + 34y' + 24ys' + 14y3 - yL) + 3h

y, - yo = (7yo' + 32y' + 12y,' + 32y' + 7y') -

Y5 - Uo = 1 (19oy - 10Uy' + 120y2' - 7Oy' + 85y') + 2SS'

U2 - ho -:(, (329yo' + 1.39y!.. - 1216yU' + 45914' - 31ys') -+ I -'"
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Y - N = - (-31yo' + 459y:' - 1216y1' + 153j/ + 3291W)

160y
( )

.45

Y - o= (11yO + 81y'- y64 + 81y4, + Ilye') - 39 .

Six-point formulas:

- yo = (475yo' + 1427y' - 798y,' + 482ys' - 173y,' + 27y')

863hya)
60480'

Y -- (28yo' + 129y,' + 14y2' + 14ys' - 61/. + y/') A. 131

37hy")
3780

3h
y, - vo - (171o ' + 73y~' + 38y2 + 38y' - 7y4' + y&')

29h'yT)

Y4 - ye =L (7y.' + 32y,' + 12y2' + 32y/' + 7y4')

945

A/s - Io (19yo' + 75y-' + 50y2' + 50y3' + 75y,' + 19y)

275h'yI
12096

3k
yo - Myo = (llys' - 14y3' + 26y3' - 14y/4' + ly/)

41h'y()

140
Seven-point formulas:

s - o = A-- (19087yo' + 65112M ' - 46461ys' + 37504ya'

- 20211y4' + 6312yb' - 83y.') + 275h'y()
24192'

h A. 132
s - 1o. = S (1139Y ' + 53 6 '10 + 33y;' + 1328y3'

7- -Y,' + 264y' - 37y.') + I)4"
043
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Y3 - u = . ((6vyo' + 3240y' + 1161y' + 2176y3'

- 729y,' + 216y3' .- ,29') + 9hsy
896

2h
Y4 - o = ( 143yo' + 696y,' + 192y2' + 752ya'

+ S7y,' + 24y' - 4y') + Sh' y
945

Ys - 2o = 6 ( 743y. + 34SO0y' + 1275y:- + 3200ya'

+ 2325y4' + 112Sy' -- .5 y6') + 2475hy(
24192 '

h
yo -- = 1:- (41yo' + 216y1' + 27y2' + 272y3'

+ 27y4' + 216y' + 41ye') - 9h'y
1400 '

7h
7 -YO = g (751yo' - 840y,' + 8547y2 - 1164Sy3

+ 14637y4' - 7224y.' + 4417ys') + 5257Ah'y"
17280 '

4h
h -- yo = 4 (115yo' + 1312y' - )048y3' + 3132y4'

- 2048y,' + 1312ye' + 113y,) - " 94h y'
14175

Eight-point fomnuulas:

A - Uo T (36799yo' + 139849y1' - 121797y2' + z133y A. 133

- 88.547y.' + 41499y,' - 11351ys' + 1375y.') - ;_953hy(
362S00 '

Y2 - UO 3 (1107yo' + 5S64yl' - 639y2' + 244Sy'

- 1927y' + 936y -- 261y,' + 32k') - 119h'y
16200 '

S- 1U = "- (1325yo' + 6795y' + 1377y2' + 5927 y'

- 3033y4' + 1377ys' - 373y.' + 4504) - 4 6, yO
4400 '

2h
YU - Yo = 9 (139yo' + 724y,' + 108y2' + S92y'

- 53y,' + 1084' - 32ys' + 4' -' 107hy'
1417
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S- = 1412 (8341yo' + 46030yi' + 1510y2' + 63670y3'

- 800y4' + 34186y.' - 9830ys' + 2290y7 - 245ys')

+ 25ho'Yo('
3584 '

y -- yo= i (401yo' + 2232y' + 18y?2 + 3224y'

- 360y,' + 2664y' + 15Syl + 72y7 - 9ys')

1400 '

- h = - (21361yo' + 116662y,' + 6958y,' + 155134y3"

+ 7840y' + 105154y' + 7457Sys' + 31882y7' - 1169ya')

8183h'Oy
(' 0 )

1036800

Y o = 4 (989yo' + 5888yl' - 92Sy2' + 10496y3'

- 4540y4" + 10496ya' - 92Sy'- + 5888y7' + 989y')

2368777y(5
467775
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ys - Yo =4192 (1431yo' + 7345y,' + 1395y,' + S325ya'

+ 2725y4' + 3411y3' - 495y.' + 55y,') - 736 /h

Uy - yo = T (41yo' + 216y,' + 27y,' + 272y3'

+ 27y4' + 216y ' + 41y,/) - 9h'
1400

7h
Y - Yo = Ts (751yo' + 3577y,' + 1323,' + 2989y'

+ 2989y4' + 1323y' + 33577y6' + 751y/) 8183h'y()
518400

8h
Us - yo = - (460y,' - 954yl + 2196ys' - 2459y4'

+ 2196ya' - 954y.' + 4(60yj) + 3956 y
14175

Nine-point formulas:

U' - y0 = (1070017yo' + 4467094yl' - 4604594y,' A. 134

+ 5595358y3' - 5033120y, ' + 314633Sys' - 1291214ye'

+ 312S74y,' - 33953yb') + 8183h'oy n0
1036S00 '

Y* - Yo = (32377yo' + 182584y,' - 42494y,'

+ 1200Sy; - 116120y,' + 74728yI' - 31154yo'

+ 7624y7' - 833ys') + hly(0
1400

Y3 - o = (12881yo' + 70902y,' + 3438y2' + 79 934 ys

- 56160y' + 34434y&' - 14062y6' + 3402y/' - 369y3)

25h'Oy 'o)
35S4 '

Y4 Y U h (4063yo' + 22576y,' + 244y,' + 32752ya'

- 9080y4' + 9232y' - 3956y6' + 076y/' - 107y&')

94h'oy ('lo
14175 '
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Butcher [56,57] also creates hybrid methods which are a combination

of RKMS's and predictor-corrector methods. Butcher [57] lists RKMS's

with Sn = 2,3, and 4 (see section A.4) and of order p = 2Sn + 2, with

V = 4. Methods up to Sn = 15 are proved to exist. On basis of various

tests these methods are highly recommended (they compare favorably

with standard predictor-correctors). In the opinion of the author,

the Rosser "Block" methods are, on the whole, better than these.

Gear [64], Gragg and Stetter [65], and Dahlquist [66] present

methods similar to Butcher's methods.

Another special class of Runge-Kuttas is given in Gates [26].

Gates formulates explicit Runge-Kuttas in which each stage (each ki)

is independent of the other stages. In the conventional Runge-Kuttas

each stage is not independent of the other stages. Each independent

stage of the Gates formulae corresponds to a standard quadrative

formula, e.g., Gauss, Radau, Lobatto, etc. Making each stage inde-

pendent of the others has a penalty--V increases for a given order

p as compared to the usual Runge-Kuttas. For example, for p = 4,5,

and 6 Gates forms have V = 5,7 and 11 respectively. The advantage

of Gates' formulation is the flexibility gotten by having the co-

efficients of one stage independent of another; another advantage is

that deriving equations for these methods are much simpler than the

usual RKE's and.s.o high order methods can be derived fairly easily.

Stoller and Morrison [67] and Day [68] discuss similar quadrative

Runge-Kuttas.

From the computational time point of view these methods are ob-

viously not recommended.
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4.6 General Comments for Further Development of the Runge-Kutta
Class of Methods:

The previous sections have tried to sample various types of Runge-

Kuttas available in current literature.

The field of Runge-Kuttas is wide open and improvements are

possible. Runge-Kuttas in general arrive at an accurate solution at

the end of an integration step, by combining solutions (ki's) at

intermediate steps which are not, in themselves so accurate. So one

way of improving Runge-Kuttas would be to choose the coefficients

of each stage in such a way that the k 's would be accurate estimates

of f(T,Y).

This should be possible without significantly increasing V,

unlike the Gates [26] approach (see section A.5). Then as each k.1

would be an accurate estimate of f(T,Y) a hermitian curve fit would

be possible giving a higher order of accuracy.

The most obvious improvement needed by Runge-Kuttas is to reduce

their stages V per step, this would make them.comparable to predictor-

correctors on computational time. In all other aspects (except error

estimation), i.e., stability and self-starting features Runge-Kuttas

are superior to predictor-correctors. So the second area of improve-

ment lies in reducing V. This is possible to some extent by using

the "Back Step" and "Front Step" methods outlined in section A.1-2,

or by using the Shanks' technique outlined in section A.1-5. Con-

ventional RKE's always have cl=0O and usually have a c.=l, hence the

k. corresponding to the ci=l of the (Tn ,Yn) step could be used for

the ki of the (Tn+,Y n+1) step reducing V by one. This would cost

something--accuracy, because the solution Yn, available at the end of
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(T ,Y ) gives a more accurate estimate for ki than is possible by using

the ki of the previous step. Also if two or more ci's have the same

value, then only one ki corresponding to the first of these cis need

be evaluated. For the rest of these ki's no more function evaluations

are necessary, they can use the same value as the first of these ki's.

Again V is reduced but a loss in accuracy would occur. For example,

1 1
a RKE(4,4) which has cl=0, c2= 1, c3= , c4 =1 would become a RKE(4,2)

by using the two techniques outlined above--ki at (Tn+l,Yn+l) would

be the k4 of (Tn,Y n), k3 at (Tn+l1 Yn+1 ) would be k 2 of the same step.

It is not possible to say, off hand, whether the "Back Step" or "Front

Step" technique would be more accurate than this one of interchanging

k.'s. Obviously the interchange techniques could also be used to
1

further reduce the V of a "Back Step" or "Front Step" method, with

(probably) a further loss of accuracy, or the Rosser [63] (see section

A.5) "Block" technique could be used to further speed up these methods.

A third area of development (not speed improvement) lies in the

RKSI class of methods. Here a calculation procedure for f or a
y

Jacobian is required. As this is available it might as well be used

to improve the order of accuracy, though at the cost of extra compu-

tational effort.

V V
Yn+l Y n + wiki + C uigi

i=l i=l

i

ki = hf(T n + cih, Y + aijk.)  A.135
j=1l

Li

gi = h2fy(Tn + dih, Yn + b igj)
gj=l

L. V
1
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The Rosser [63] (see section A.5) should be applicable to speed up

any type of Runge-Kutta.

Many authors have created hybrid methods which combine Runge-Kutta's

with predictor-correctors, to try and combine the advantages of both

methods (see section A.5). Similarly hybrid methods combining Runge-

Kuttas with extrapolation and other methods should be possible.

The Rosser [63] "Block" technique (see section A.5) could be

adapted to further speed up these hybrid methods. These hybrid

methods may grow to such forms that Runge or Kutta would hardly

recognize their method.

There are other areas in which Runge-Kutta's can be developed

and improved, it is hoped that present and future mathematicians will

do so.
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APPENDIX II

MULTI-STEP METHODS

This appendix lists many of the multi-step methods that are in the

current literature.

The most common form of multi-step methods is

k
(a+y + h 8 li) = 0.

i=O n+-i n+l-ii=0

When 80 = O, then the equation becomes an explicit equation for yn+l'

such equations are called Predictor (P) equations. When 80 # 0,

the equation becomes an implicit equation for Yn+l' i.e., the equation

must be iterated for Yn+l1 Such equations are called Corrector (C)

equations.

Although the Predictor (P) equation can be used with one derivative

evaluation (E) at each step of the numerical solution, usually a combina-

tion of the P and C equations is used to solve the initial value prob-

lem. The various modes of these P-C combinations are PECE, PEC, PE(CE)
s

and P(EC)s . The first two modes are not iterative methods. First,

Yn+l is predicted. Then, there is a derivative evaluation of y' .n+1 n+l

Then Yn+l is corrected using y'nl. For the first mode a new y' is

evaluated. The third and fourth modes simply iterate s times on the

corrector.

The Predictor and Corrector equations presented below are arranged

in related groups. The format of each equation is in the following

order: 1) the equation number S, 2) the order m and number of

backsteps n, written (m,n), and 3) the a and 8 coefficients. The

general format is
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S. (m,n) (al + c2 + + a)
a 0 1 2 n

+ ( ) ( 0 +1 + + n).
0

Euler Predictor: [556]

1. (1,1) ( l)() + ()(0 + 1)

Milne Predictor: [556]

2. (4,3) (-)(0 + 0 + 0 + 1) + 1 (0 + 8 - 4 + 8)

Millman-Klopfenstein Predictor: [277]

3. (4,4) (-)(-.29 - 15.39 + 12.13 + 4.55) + (-)(0 + 2.27 + 6.65

+ 13.91 + 0.69)

Craine-Klopfenstein Predictor: [95]

4. (4,4) (-)(1.547 - 1.867 + 2.017 - 0.6973) + (-)(0 + 2.002 - 2.031

+ 1.818 - 0.7143)

Hermite Extrapolation Predictors: (556]

5. (3,2) )(-4 + 5) + ()(0 + 4 + 2)

6. (4,3) ()(-9 + 9 + 1) + ()(0 + 6 + 6)

7. (5,3) (I)(-18 + 9 + 10) + )(0 + 9 + 18 + 3)

8. (7,4) (-)(-128 - 108 + 198 + 47) + (j)(0 + 16 + 72 + 48 + 4)

11
9. (9,5) (-)(-475 - 1400 + 600 + 1150 + 131) + (-)(0 + 25 + 200

+ 300 + 100 + 5)
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Nystrom Predictors: [556]

10. (2,1) (O)(0 + 1) + (')(0 + 2)

1 1
11. (3,2) ()(O + 1) + ()(0 + 2 + 0)

1 1
12. (4,3) (i)(0 + 1) + (1)(0 + 7 - 2 + 1)

13. (5,4) ( )(0 + 1) + (-)(0 + 8 - 5 + 4 - 1)

1 1
14. (6,5) (j)(0 + 1) + (-0)(0 + 269 - 266 + 294 - 146 + 29)

Same Predictors from method of undetermined coefficient: [556]

15. (5,4) (1)(0 + 0 + 1) + i(0 + 21 - 9 + 15 - 3)

1 1
16. (5,4) (i)(0 + 0 + 0 + 1) + 4(0 + 9 - 32 + 64)

17. (5,3) (-)(- 9 + 9 + 1) + (-)(0 + 6 + 6)

1 1
18. (5,3) (i)(-8 + 9) + (1)(0 + 17 + 14 - 1)

19. (5,3) (1)(-7 + 9 - 1) + (-)(0 + 16 + 10 - 2)

20. (4,3) ()(-54 + 45 + 10) + (j)(0 + 24 + 42)

1 1
21. (4,2) (i)(-4 + 5) + (i)(0 + 4 + 2)

1 1
22. (5,4) (1)(-l + 0 + 1 + 1) + ()(0 + 3 + 0 + 3)

Schoen Predictors: [461]

23. (5,5) (1)(-0.01745885 + 1.29864818 - 0.13318934 - .14799999)

+ (j)(0 + 3.0001344 - 3.05980708 + 2.98844518 - 1.66187410

+ 0.32137111)
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24. (6,6) (i)(-.92790378 + 2.05094161 + .54664912 - 0.67100875

+ 0.0005296 + 0.00126884) + (1)(0 + 3.60328436

- 3.60284254 + 5.40345116 - 4.77344249 + 1.80481406

- 0.29749495)

Krough Predictors: [556]

25. (4,4)(A) (-)(1 + 1) + (8)(0 + 119 - 99 + 69 - 17)

1 1
26. (4,4)(B) (--)( 4 + 3) + (-2-)(O + 103 - 88 + 61 - 15)

1 1
27. (5,5) (- )(-1 + 32) + (-740-)(0 + 22,321 - 21,774 + 24,216

- 12,034 + 2391)

28. (6,6) 1 1
28. (6,6) (--)(-11 + 23) + (7 )(0 + 62,248 - 62,255 + 101,430

- 76,490 + 30,545 - 5079)

1 1
29. (7,7) (-O)(-21 + 31) + (604800) (0 + 2,578,907 - 2,454,408

+ 5,615,199 - 5,719,936 + 3,444,849 - 1,149,048

+ 164,117)

Adams-Bashforth Predictors: [556]

30. (2,2) (j)(1) + (-)(0 +3 - 1)

1 1
31. (3,3) (t)(1) + (--2)(0 + 23 - 16 + 5)

32. (4,4) (1i)(1) + (-)(O + 55 - 59 + 37 - 9)

33. (5,5) ()(1) + (-720)(0 + 1901 - 2774 + 2616 - 1274 + 251)

34. (6,6) ()(1) + (4--40) (0 + 4277 - 7923 + 9982 - 7298 + 2887 - 475)
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35. (7,7) (1)(1) + 60,480)(0 + 198,721 - 447,288 + 705,549 - 688,256

+ 407,139 - 134,472 + 19,087)

36. (8,8) )(1) + (1201960)(0 + 434,241 - 1,162,169 + 2,183,877

- 2,664,477 + 2,102,243 - 1,041,723 + 295,767

- 36,799)

Milne Corrector: [556]

1 1
37. (4,2) (i)(0 + 1) + (i-)(1 + 4 + 1)

Hamming Corrector: [556]

38. (4,2) (-)(9 + 0 - 1) + (-)(3 + 6 - 3)

Milne-Reynolds Corrector: [361]

39. (5,3) (- )(1 + 7) + (19 2 )(65 + 243 + 51 + 1)

Correctors from method of undetermined coefficients: [556]

40. (4,2) (-)(4 + 1) + (i)(2 + 4)

41. (5,3) (j)(0 + 0 + 1) + ()(3 + 9 + 9 + 3)

1 1
42. (5,3) (-)(1 + 1 + 1) + (-6)(1 3 + 39 + 15 + 5)

1 1
43. (5,3) (- )(1 + 1) + (-8)(17 + 51 + 3 + 1)

1 1
44. (5,3) (-)(2 + 1) + (- -2)(25 + 91 + 43 + 9)

1 1
45. (5,3) (--)(9 + 9 - 1) + (7-)( 6 + 18)

46. (53)()(9 + - )+( 0 + 22 - 8)1
46. (5,3) (- )(9 + 1- 1) + (-f-)(10 + 22 - 8)
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47. (5,3) (i)(9- 1 - 1) + (-1)(8 + 14 - 10)

48. (5,3) (-1)( 4 5 - 9 - 5) + (-i)(12 + 18 + 18)

49. (5,3) ()(9 - 3 - 1) + ()(2 + 2 -4)

Norsett A(a) stable Correctors: [389]

1 1
50. (4,3) (-)( 1 8 - 9 + 2) + (ft)(6)

1 1
51. (5,4) (-)(48 - 36 + 16 - 3) + (12)

52. (6,5) (-37-)( 3 0 0 - 300 + 200 - 75 + 12) + (y3-)(60)

53. (7,6) (
' 147)(360 - 450 + 400 - 225 + 72 - 10) + (-147)(60)

Adams-Moulton Correctors: [422]

54. (2,1) (i)(1> + (-)(1 + 1)

55. (3,2) ()(1) + (f2)(5 + 8 - 1)

56. (4,3) (i)(1) + (--4)( 9 + 19 - 5 + 1)

1 1
57. (5,4) (-)(1) + (.2-)(251 + 646 - 264 + 106 - 19)

1 1
58. (6,5) (-)(1) + (- -)(475 + 1427 - 798 + 482 - 173 + 27)

1 1440

59. (7,6) (1)(1) + (60, 80)(19,087 + 65,112 - 46,461 + 37,504

- 20,211 + 6312 - 863)

60. (8,7) 1)(1) + (120960)(36,799 + 139,849 - 121,797 + 123,133

- 88,547 + 41,499 - 11,351 + 1375)
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61. (9,8) (1)() + (3,628,800)(1,070,017 + 4,467,094 - 4,604,594

+ 5,593,358 - 5,033,120 + 3,146,338 - 1,291,214

+ 312,874 - 339,533)

62. (10,9) (-)(1) + (7,251,600)(2,082,753 + 2,449,717 - 11,271,304

+ 16,002,320 - 17,283,646 + 13,510,082 - 7,394,032

+ 2,687,864 - 583,435 + 57,281)

Fehlberg Correctors: [422]

63. (3,2) )(4 + 1) + (t)(2 + 4)

1 1
64. (4,3) ()(9 + 9 - 1) + (T7)(6 + 18)

65. (5,4) (-7)(16 + 0 + 0 + 11) + (-)(3 + 10 + 0 + 6 + 1)

1 1
66. (6,5) (1)(0 + 0 + 13,300 + 8775 - 756) + (21,319-- (6720

21,319 21,319

+29,700 + 13,500 + 21,300)

1 1
67. (7,6) ( 1 )(2 4 3 + 0 + 125 + 0 + 0 + 632) + ( -)(120 + 567

+ 0 + 600 + 0 + 405 + 72)

68. (8,7) (2,49 48)(0 + 0 + 28,107,625 + 0 + 29,545,048
82,490,048

+ 2,783,200 - 1,994,625)

+ ( 8 2 , 4  )(24 ,299 ,520 + 126,015,750
82,490,048

+ 21,168,000 + 0 + 70,634,970)

Wesson Correctors: [422]

1 1
69. (3,2) (-)(1 + 1) + ( -)(3 + 8 + 1)

1 1
70. (3,2) (- -)(9 + 16) + (--.)(109 + 328 + 55)
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71. (5,4) ( )(1 + 0 + 0 + 15) + (11520(3611 + 16,006 + 5496

+ 15,466 + 3341)

1 1
72. (5,4) (-6)(8 + 2 + 1 + 5) + (--304)(767 + 2638 + 168 + 1282 + 185)

73. (5,5) ()(1) + (2,440,080)(859,838 + 2,143,299 - 802,706

+ 267,244 - 18,396 - 9199)

74. (8,8) ( )(1) + (3,628,800)(1,147,591 + 3,846,502 - 2,432,522

+ 1,251,214 + 397,060 - 1,197,806 + 880,858

- 307,718 + 43,621)

Rodabaugh-Wesson Correctors: [422]

75. (5,4) (- 6)(1 + 2 + 4 + 9) + (11,520)(3703 + 15,518 + 6168

+ 10,898 + 1873)

76. (7,6) (- )(1 + 2 + 4 + 8 + 16 + 33) + (4301080)(128,627

+ 642,168 + 130,167 + 693,632 + 143,137 + 399,240

+ 61,469)

1 1
77. (8,8) (i)(1) + (3,628,800)(1,111,267 + 413,709 - 3,449,594

+ 3,285,358 - 2,145,620 + 836,338 - 136,214

- 17,126 + 7297)

78. (9,8) (2,6, )(9784 + 20,133 + 41,040 + 79,775 + 159,816
2,560,016

+ 319,691 + 639,792 + 1,289,985)

+ (2, 16)(725,340 + 4,150,740

- 280,710 + 6,541,620 - 1,808,250

+ 5,630,940 + 244,290 + 2,458,620

+ 345,330)


